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ABSTRACT 
This article explains, demonstrates, and evaluates Chaum’s 
protocol for detecting a man-in-the-middle (MitM) of text- 
messaging network communications. MitM attacks pose 
serious risks to many network communications. Networks often 
mitigate these risks with robust protocols, such as TLS, which 
assume some type of public-key infrastructure that provides a 
mechanism for the authenticated exchange of public keys. 
By contrast, Chaum’s protocol aims to detect a MitM with 
minimal assumptions and technology, and in particular without 
assuming the authenticated exchange of public keys. Chaum 
assumes that the eavesdropper can “sound like” the commu-
nicants but that the eavesdropper cannot fabricate sensible 
conversations. 

Using an encryption function and one-way function, Chaum’s 
protocol works in three phases. In Phase I, the communicants 
exchange their public keys. In Phase II, each communicant 
generates a random string. The first communicant cryptogra-
phically commits to that string, and sends the string to the other 
communicant after receiving the other’s string. In Phase III, using 
any of four different “scenarios” the communicants verify that 
each possesses the same two strings. The protocol forces any 
MitM to cause the communicants to possess different pairs of 
strings. The text-messaging scenario is similar to a forced-latency 
protocol proposed by Wilcox-O’Hearn in 2003. 

This article implements and experimentally demonstrates the 
effectiveness of the third scenario, which uses timing to detect a 
MitM in text-messaging. Even assuming a MitM can send 
messages without any network latency, the protocol forces the 
MitM to cause delays noticeable by the communicants. This 
article is the first to explain, demonstrate, and evaluate Chaum’s 
protocol, which Chaum described only in an abandoned and 
nearly inscrutable patent application. 
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1. Introduction 

In 2006, David Chaum hosted seven highly capable cryptographers1 who 
attend the Crypto Conference to a fancy three-hour lunch, during which he 
explained his latest idea: a new protocol for detecting man-in-the-middle 
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(MitM) in a variety of network communications using minimal assumptions 
and technology. Chaum provided the participants in advance with diagrams 
and written materials, yet by the end of the affair, only one of these august 
guests seemed to understand the proposal. Subsequently, Chaum worked 
with one guest (Shoup), without avail, in an attempt to prove mathematical 
properties of the protocol.2 Since then, few have even heard of the protocol, 
which Chaum described only in a now abandoned U.S. patent application 
(Chaum 2006) that is nearly inscrutable. 

MitM attacks remain a significant threat to network communications. For 
example, in February 2013, Dyn Research (2013) detected numerous MitM 
attacks that redirected Internet traffic from major financial institutions, gov-
ernments, network service providers, and others, from the United States, 
South Korea, Germany, and other countries through the Internet Service Pro-
vider GlobalOneBel in Belarus. The attack also tampered with network trace 
utilities, making it difficult for a victim (e.g., in Virginia) to realize that some-
one in Minsk could monitor his web activities. 

By mid-2014, blogs reported that the Chinese computer company Lenovo 
was shipping new computers with the Superfish malware (The Next Web. 
com). Superfish implements a powerful MitM attack, defeating SSL 
implementations by installing a bogus self-signed certificate authority. 
Although this malware apparently performed “only” as adware, it had the 
alarming potential to do much more. These two examples illustrate the need 
for better protection against MitM threats, including defense strategies that go 
beyond current SSL implementations. 

Building on prior initial work of Newton (2010) and Seymour (2013), this 
article explains Chaum’s protocol, demonstrates its effectiveness with timing 
studies in a text-messaging scenario, and evaluates its utility. 

Chaum’s protocol proposes a mitigation to the significant threat of eaves-
dropping by an adversary who inserts herself between two communicants in a 
network. Its main distinguishing characteristic is to use minimal assumptions 
and technology, building on his belief that fewer assumptions tend to lead to 
greater security. In particular, Chaum does not assume the existence of any 
trusted mechanism for communicants to exchange authenticated public keys. 
By contrast, the widely-used SSL/TLS protocols (Dierks and Rescorla 2008; 
Rescorla 2001) require some type of assured public-key infrastructure (PKI) 
that enables communicants to exchange authenticated public keys. In com-
parison with the Interlock (Rivest and Shamir 1984) and Zfone (Wikipedia, 
“Zfone”) protocols, Chaum’s protocol makes fewer assumptions and protects 
against a stronger adversary. The text-messaging scenario we analyze is 
similar to a little-known forced-latency protocol proposed by Wilcox- 
O’Hearn (Langley 2003; Wilcox-O’Hearn 2003) in 2003 on web postings. 

2Private communications with David Chaum.  

2 A. T. SHERMAN ET AL. 



As illustrated in our accompanying animation (Cyber Defense Lab), the pro-
tocol works in three phases. First, the communicants exchange public keys with-
out authentication assurance. Second, each communicant generates a random 
string. The first communicant commits to it, and sends it to the other communi-
cant after receiving the other’s string. Third, using one of four different scenar-
ios, the communicants check if they possess the same two strings. The protocol, 
by means of the string commitment, forces any MitM to cause the communi-
cants to possess different pairs of strings. We focus on the scenario for text-mes-
saging, which we consider the simplest and most practical. In this multi-round 
scenario, the communicants detect a MitM through increased message delays. 

The protocol has asymmetrical security properties: If the protocol com-
pletes even one initial round successfully (with a not-too-long delay), then 
the communicants are certain that there is no MitM. If, however, one or more 
rounds yield a sufficiently long delay, then the communicants strongly suspect 
a MitM (but the delay might have been caused by other reasons). 

The protocol is especially useful when there is no available mechanism for 
exchanging authenticated public keys. For example, having met Bob earlier in 
the day at a conference, Alice later converses with Bob via text-messaging. 

We experimentally demonstrate the effectiveness of the protocol. To protect 
against MitM, communicants must choose what assumptions they wish to 
accept. For example, the assumptions underlying TLS include a trusted PKI. 
Chaum’s protocol assumes each communicant can detect semantic irregulari-
ties in the communication and knows an upper bound on the maximum 
delivery time of a text message. There are situations in which Chaum’s protocol 
adds value (e.g., when a suitable PKI is not available). Regardless, there is merit 
in understanding its ideas and mechanisms, as well as the necessary and 
sufficient assumptions to effect secure sessions. Given the difficulties previous 
researchers encountered with this protocol, it is non-trivial from the patent 
application simply to understand how it works. 

Our contributions include 
.� The first clear and correct explanation of Chaum’s protocol; 
.� The first implementation and demonstration of Chaum’s protocol, which 

we carry out using a text-messaging scenario; 
.� Experimental timing data showing that the protocol works effectively; and 
.� A simplification of the protocol for text-messaging, which uses a constant 

wait time that does not depend on the committed string. 

2. Background and previous work 

Defenders against MitM threats have relied primarily on three strategies: 
establishing authenticated public keys, exploiting shared secrets among the 
communicants, and leveraging characteristics of the communication channel 
to detect a MitM without the exchange of authenticated public keys. 
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Blake-Wilson, Johnson, and Menezes (1997) surveyed a variety of key 
agreement protocols, and Blake-Wilson and Menezes (1999) and Johnston 
and Gemmell (2002) analyzed authenticated Diffie-Hellman key agreement 
protocols. 

A variety of mechanisms exist to help communicants establish authenti-
cated public keys, including certificates, PKI, and DNSSEC. Building on 
certificates, the SSL/TLS protocols (Dierks and Rescorla 2008; Resorla 2001) 
enable communicants to establish secure sessions with confidentiality, 
authentication, and integrity. In some applications, however, mechanisms 
for exchanging authenticated public keys are not easily available, and they 
add complexity. 

Lightweight “bottom-up” techniques, such as PGP fingerprints, have 
limited security (e.g., sometimes an adversary can easily edit the fingerprint 
without detection), and they can erode privacy by publicly associating 
identities and public keys. 

Barak and Colleagues (2005) studied secure multi-party computations 
without authentication. 

Meadows (2003) and Cremers, Lafourcade, and Nadeall (2009) surveyed a 
variety of tools for analyzing cryptographic protocols. Such tools include 
Cryptographic Protcol Shapes Analyzer (CPSA) (Doghmi, Guttman, and 
Thayer 2007),3 Maude-NPA,4 and Scyther.5 Although none of these tools is 
configured to reason about time, it ought to be possible to adapt some of them 
to perform temporal reasoning using their ability to deal with sequences of 
events. 

In the rest of this section, we explain how Chaum’s protocol is stronger 
than the Interlock and Zfone protocols, which are two well-known protocols 
for detecting a MitM without assuming an authenticated exchange of public 
keys. We also review the forced-latency protocol of Wilcox-O’Hearn and 
the prosecution history of Chaum’s patent application. 

2.1. Interlock protocol 

In 1984, Rivest and Shamir published the Interlock protocol for detecting a 
MitM, Eve. For Alice to send a message m1 to Bob, using what she believes 
to be Bob’s public key, Alice encrypts the message to produce a ciphertext 
c1. Alice divides c1 into two halfs c11 and c12. Similarly, Bob encrypts his 
message M1 to produce a ciphertext C1, which Bob divides into two halfs 
C11 and C12. Alice sends c11 to Bob. After Bob receives c11, Bob sends C11 
to Alice. After Alice receives C11, Alice sends c12 to Bob. After Bob receives 
c12, Bob sends C12 to Alice. 
3https://hackage.haskell.org/package/cpsa 
4maude.cs.uiuc.edu/tools/Maude-NPA/ 
5http://www.cs.ox.ac.uk/people/cas.cremers/scyther/  
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By sending half the ciphertext, Alice cryptographically commits to the mess-
age in a way that Eve cannot exploit. Eve cannot decrypt the ciphertext without 
the entire ciphertext, yet the protocol demands that Eve send a transmission to 
Bob before Alice will transmit the second half of her ciphertext. Consequently, 
Alice or Bob will detect Eve, either by detecting a semantic irregularity in the 
conversation or a timing delay. The communicants will detect this delay either 
in real time units or by an answer to a question being delayed by one trans-
mitted message: A question in Alice’s message m1 might be answered in Bob’s 
response M3 rather than in Bob’s immediate response M2. As with Chaum’s 
protocol, the Interlock protocol assumes that Eve cannot fabricate sensible 
conversations. 

The protocol can be used in full-duplex or half-duplex modes. In full-duplex, 
each communicant transmits a message in each cycle. In half-duplex, the 
sender sends the entire message in two halfs before the recipient sends his 
response. When used in half-duplex, the communicants can detect a MitM only 
by assuming that Eve must increase the latency of the network communica-
tions, since she must receive the entire message before constructing a response. 

Thus, the Interlock protocol assumes a weaker adversary than does 
Chaum’s protocol. Chaum’s protocol is robust against an adversary with 
zero network latency, but such a powerful adversary can defeat the Interlock 
protocol in half-duplex mode. 

Bellovin and Merritt, and Ellison point out additional weaknesses of 
the Interlock protocol, some of which can be mitigated by forward latency 
(Wikipedia, “Interlock Proticol”). 

Rivest and Shamir assumed that the communicants can recognize each 
other’s voices, but there is nothing in the Interlock protocol that demands this 
assumption. 

2.2. Zfone protocol 

Zimmermann’s Zfone (Wikipedia, “Zfone”) software secures Voice over Inter-
net Protocol (VoIP) by implementing the 2011 ZRTP protocol (Zimmermann, 
Johnston, and Callas 2011), which provides some protection against a 
MitM. Without relying on any authenticated exchange of public keys, Zfone 
establishes an ephemeral Diffie-Hellman key pair. Zfone further protects 
subsequent communications between the parties by cached key material, using 
ideas similar to those described by Abdo et al. (2006). 

In a crucial step of ZRTP, each communicant reads a displayed “short 
authentication string” (SAS), while the other verifies the utterance against 
the displayed SAS. ZRTP assumes that during this step, each communicant 
can recognize each other’s voice, and that the adversary cannot sound like 
the speaker. The SAS is a hash of the public key. Vaudenay (1995) gave a basis 
of this protocol. 
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Thus, the Zfone protocol assumes a weaker adversary than does Chaum’s 
protocol. Chaum’s protocol is robust against an adversary who can sound like 
the communicants (e.g., by recording and playback), but such an adversary 
can defeat the Zfone protocol. 

2.3. Forced latency 

In the winter of 1999/2000, Wilcox-O’Hearn devised a forced-latency protocol, 
which is very similar to Chaum’s text-messaging scenario.6 Wilcox-O’Hearn 
described his protocol on his blog on 31 March 2003, and Langley offered 
another explanation of it on 6 April 2003. The idea of forced latency to detect 
MitM dates back to at least 1982 from the Interlock protocol. 

In the forced-latency protocol, Alice sends a commitment of her message 
M, waits an agreed-upon time τ, and then sends M. Alice suspects a MitM 
if Bob’s response arrives more than τ seconds after Alice sends M. 

Wilcox-O’Hearn proposed his protocol in the context of preventing what he 
calls the “chess grandmaster attack,” in which an unscrupulous chess player 
repeats his opponent’s moves against a grandmaster in a concurrently-played 
game and then copies the grandmaster’s replies in the original game. Recently, 
Ed Zieglar observed that the Wilcox-O’Hearn protocol is vulnerable to an 
attack that exploits small message spaces (e.g., small number of possible chess 
moves): Simultaneously initiate a protocol instance for each possible message.7 

2.4. Prosecution history of Chaum’s patent application 

On 24 March 2006, building on his provisional application filed 24 March 
2005, Chaum (2006) filed a U.S. patent application on a communications 
systems embodying his MitM detection protocol. On 30 December 2008, 
the Patent Office declared the application abandoned. Chaum had never 
responded to a communication dated 18 June 2008, rejecting all 14 claims 
both on the basis of indefiniteness and on the basis of anticipation over the 
2006 patent application of Abdo and Colleagues, which is a continuation of 
a 2002 patent application. The examiner also rejected the last six claims, 
declaring, “There is no result produced by the claimed system that is useful, 
concrete, and tangible.” (U.S. Patent Office, p. 3). 

It is not surprising that an examiner found Chaum’s application indefinite 
given that six out of seven hand-picked extraordinary “dining cryptographers” 
could not understand the proposal. A patent must be clear and understand-
able to a person of ordinary skill in the art. We suspect that the examiner, 
too, did not understand the application and hence could not appreciate its 
novel and possibly useful contributions. 
6Private communications with Zooko Wilcox-O’Hearn. 
7Private communications with Ed Zieglar.  
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It is our opinion that Abdo and Colleagues does not anticipate 
Chaum. Abdo dealt with a different technique: to extend trust from a prior 
authenticated session by saving shared secrets established during that session. 
Wilcox-O’Hearn, however, did anticipate some claims, though his disclosures 
are in a chess setting. 

3. Assumptions and adversarial model 

We assume no trusted third party nor any trusted mechanism for exchanging 
authenticated public keys. 

The primary goal of the adversary is to insert herself between the 
communicants, relaying messages from each to the other, for the purpose 
of eavesdropping on the conversation. 

We say that the adversary has broken the protocol if she can read or modify 
at least one bit of the plaintext conversation without detection. The protocol 
does not aim to prevent an adversary from intercepting and relaying the 
ciphertext without modification. 

We assume a powerful adversary who can “sound like” each of the 
communicants, either by recording and playing back transmissions of the 
communicants, or by impersonating the sound of their voices. We assume, 
however, that the adversary cannot “think like” either communicant; that 
is, the adversary cannot fabricate sensible conversations without detection. 
Thus, we assume that each communicant can detect any “semantic irregu-
larity” in the communications, as might be revealed, for example, by one of 
them asking a personal question (e.g., “What did you eat with me at dinner 
last Tuesday?”). The number of bits of such shared personal information is 
limited. 

We assume each communicant has a random number generator and 
computationally-secure standard cryptographic primitives, including a one- 
way function, encryption function, hash function, and pseudorandom 
number generator. 

We assume the adversary has powerful network capabilities including the 
ability to send and receive network communications without any network 
latency. The protocol aims to be secure even when the adversary’s network 
capabilities greatly exceed those of the communicants. 

Scenario 3 assumes each communicant can observe the time at which he or 
she sends or receives any message. This scenario also assumes each communi-
cant knows a typical maximum time required to send a message and receive a 
response, including the time to construct the response. 

Some of the scenarios assume further that the communicants share a 
common public string, such as a book or database of jokes, also known to 
the adversary. Some also assume that the communicants can embed a short 
string (e.g., an index into the common public string) in a semantically 
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meaningful utterance in such a way that the adversary cannot modify the 
embedded string without detection. 

4. The Chaum protocol 

Chaum’s protocol works in three phases: (I) Exchange public keys without 
authentication; (II) commit to a string; x and exchange string, and (III) 
verify if the communicants possess the same strings. Each communicant will 
possess the same pair of strings if and only if there is no eavesdropper in the 
middle. 

Separately, as we summarize in the appendix, Chaum additionally proposes 
three ways for communicants to expand their “web of trust” by leveraging 
their trust in the credentials (public keys) of common friends. 

We shall assume Alice (A) is communicating with Bob (B), possibly in the 
presence of eavesdropper Eve (E). 

We assume that Alice and Bob must follow the protocol, but Eve may do 
whatever she wishes. If either communicant detects non-compliance with 
the protocol, that communicant terminates the protocol. Similarly, if either 
communicant detects any semantic irregularity in the conversation, that 
communicant terminates the protocol and assumes that Eve is present. 

Two of Eve’s strategies are (1) block all communications between Alice 
and Bob, and instead hold separate parallel conversations with each. The 
assumption that Eve cannot fabricate sensible conversations ensures that 
the communicants will detect this strategy, but no technical aspect of the 
protocol prevents this strategy. (2) Sit in the middle between Alice and 
Bob, relaying all messages from each to the other. In this second strategy, 
the committed string forces Eve to establish separate string pairs with Alice 
than with Bob. In Phase III, each scenario enables Alice and Bob to detect that 
they possess different string pairs. 

Throughout, we explain the protocol with the help of diagrams 
showing what happens without Eve, and what might typically happen with 
Eve present. 

In Phase I, Alice and Bob exchange public keys and establish a session key. 
All subsequent communications between Alice and Bob are encrypted with 
this session key. Because the effectiveness of the protocol does not depend 
on this layer of encryption, for simplicity and clarity, we omit it from all of 
our protocol diagrams. Use of this session key forces Eve, if present, to 
be present initially and throughout the conversation. Also, it protects the 
conversation from anyone who does not know the session key. 

Also for simplicity and clarity, we omit other standard details from our 
protocol diagrams, such as the presence of unique sequence numbers, 
timestamps, and protocol instantiation numbers cryptographically bound to 
each communication. 
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4.1. Notation 

Let Ek(m) denote the encryption of message m under key k; let f be a one-way 
function; and let h be a cryptographic hash function. Let || denote string 
concatenation. Let trunc128() mean truncate to 128 bits. 

Let pA, pB, pE denote the public keys of Alice, Bob, and Eve, respectively, 
and let sA, sB, sE denote the corresponding private keys. 

Our notation, which differs from Chaum’s, relates to notation in Chaum’s 
patent application as follows. Chaum introduces the symbols C and D, which 
represent the communication devices (e.g., computers) of Alice and Bob, 
respectively. Chaum denotes the public keys of Alice, Bob, and Eve as qc, 
qd, and qf, respectively, appealing to a context involving discrete logarithms. 
He denotes the corresponding private keys as c, d, and f. In the patent 
application, rcd denotes a session key used by Alice and Bob. Chaum writes 
the expression y ¼ x ⊕ x0 to denote a general combining operator ⊕, which 
is not necessarily exclusive-or. 

4.2. Phase I: Exchange public keys 

Alice and Bob exchange public keys using any unauthenticated key exchange 
protocol, such as the Diffie-Hellman protocol (Rescorla 1999). They also 
establish a session key, used to encrypt all subsequent communications 
between Alice and Bob. 

After Phase I, there are two cases to consider: Eve was present, and Eve was 
not present. If Eve was not present, then Alice and Bob exchanged their 
correct public keys, and they established a session key known only to them. 

If Eve was present, then unknown to Alice and Bob, Alice and Eve 
exchanged public keys pA, pE and established a session key k1, while Eve 
and Bob exchanged public keys pE, pB and established a session key k2. Alice 
thinks pE is possibly Bob’s public key, and Bob thinks pE is possibly Alice’s 
public key. 

Only in Phase III will Alice and Bob learn which case is true. 

4.3. Phase II: Commit to string x 

Alice generates a random string xA and shares it with Bob, and Bob generates 
a random string xB and shares it with Alice. Importantly, Alice commits to xA 
by sending f(xA, pA, pB) before Bob shares xB. Without committing to xB, Bob 
sends xB to Alice. After receiving xB, Alice shares xA. 

Let x̂A denote the string Bob receives purportedly from Alice, and let x̂B 
denote the string Alice receives purportedly from Bob. If Eve is present, the 
string xA sent by Alice might not be the string x̂A received by Bob. 

Alice computes the string pair yA ¼ xAjjx̂B, and Bob computes the string 
pair yB ¼ x̂AjjxB. 
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Figures 1 and 2 show this process in detail. Before computing yB, Bob 
verifies the correctness of the received commitment f(xA, pA, pB) by recomput-
ing it, using his knowledge of x̂A; pA; pB. Bob terminates the protocol if this 
verification fails. 

If Eve is not present, then yA ¼ yB. If Eve is present, the protocol with its 
commitment forces Eve to choose her value xE to be sent to Bob before 
learning what value xA Alice chose. As a result, at the end of Phase II, Alice 
and Eve compute the string pair yA, and Eve and Bob compute the string pair 
yB, with yA ≠ yB. 

One could skip Phase II and simply take yA and yB to be pA||pB, as under-
stood by Alice and Bob, respectively. The benefit of Phase II is to establish 
fresh values yA, yB for each session. 

4.4. Phase III: Scenarios to detect if strings differ 

In Phase III, Alice and Bob detect if Eve is present by determining if the strings 
yA and yB they computed in Phase II differ. To do so, they carry out one of four 
different “scenarios,” which exploit various aspects of the communications 
channel (e.g., timing, jitter) or which exploit a common public string. The 
appendix summarizes how each of the four scenarios work. 

Each scenario works not by keeping the strings yA and yB secret from Eve 
(Eve knows them), but by enabling Alice and Bob to detect when these strings 
differ, even with Eve is in the middle. 

We focus on Scenario 3, a text-messaging scenario involving timing, because 
we consider it the simplest and most practical of the scenarios from the 
patent application. Each scenario implements a “ping-pong” protocol 
comprising a sequence of “rounds,” where each round consists of a sequence 

Figure 1. Phase II of Chaum's protocol, without Eve present. Alice first commits to her random 
string xA but waits to receive Bob's xB before Alice sends her xA to Bob.  
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of transmissions (we call them “pings” and“pongs”) alternately sent from one 
party to the other. 

Throughout the conversation, and especially at the beginning, each com-
municant monitors the conversation for any possible semantic irregularity 
(typically this monitoring exploits informal shared secrets); if any irregularity 
is detected, the communicant terminates the protocol suspecting a MitM. 

5. Scenario 3: Text-messaging 

In this scenario, Alice measures the elapsed time from sending a message to 
Bob to receipt of his response. A cryptographic commitment combined with a 
mandatory wait by Bob forces a MitM to double this time, even assuming a 
powerful adversary with no network latency. We now explain how the 
scenario works and why it works correctly. We also propose a simplification 
based on constant wait times. 

This scenario requires Alice and Bob beforehand to have chosen some 
agreed-upon wait time, which we assume is also known by Eve. A simple 
policy is to use a common default wait time that depends only on the network 
technology. This time is agreed upon securely in advance and is not 
negotiated in the presence of Eve. 

5.1. How Scenario 3 works 

At the end of Phase II, Alice computed a string yA, and Bob computed a string 
yB. Alice and Bob wish to determine if yA ≠ yB, indicating presence of a MitM. 

As illustrated in Figure 3, Alice begins the first round by selecting a round 
key k at random. She salts this key with her yA to produce the salted key k0

Figure 2. Phase II of Chaum's protocol, with Eve present. Eve must commit to a string xE before 
learning Alice's xA. As a result, Alice and Bob end up with different string pairs yA ≠ yB.  
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(e.g., k0 ¼ trunc128(h(k, yA))). The details of the salting technique are 
unimportant, except that it should be free of extreme algebraic weakness. 

Next, Alice sends Bob the commitment Ek0(m), where m is the next text 
block of the conversation. Upon receipt, Bob waits a pre-agreed upon time 
(e.g., a constant amount) and then sends Alice a key request. 

Upon receipt of the key request, Alice first checks that the elapsed time is 
neither too long nor too short. Less than the expected wait time is too short; 
twice the expected wait time is too long. If the elapsed time is out of bounds, 
then Alice suspects a MitM. If the elapsed time is within bounds, then Alice 
sends the unsalted key k to Bob. 

Using k and the salt yB, as known to Bob, Bob calculates k0 and deciphers 
the message. Each communicant always checks the received message for 
semantic irregularity, terminating the conversation if any is found. 

Bob then constructs his response and sends it to Alice. There are multiple 
variations of how the protocol continues. One choice is for Bob, in his next 
message to Alice, to begin the next round of the scenario, playing the role 
of Alice. Regardless, Alice or Bob selects a new round key for each round. 

Another variation, which we implement in our prototype, is to “dovetail” 
the current round with the next round. In this variation, Bob’s last message 
of the current round begins the next round, with Bob then playing the role 
of Alice from the previous round. Thus, the first “ping” of the next round 
overlaps with the last “pong” of the current round. 

Figure 3. Scenario 3, without Eve present. Alice commits to message m1 by encrypting it with k0, 
a randomly chosen key k salted with her string pair yA. Bob waits and then sends a key request. 
Alice sends the unsalted key, after which Bob sends his reply message m2.  
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In this dovetailing variation, upon receipt of Bob’s last message from the 
current round, Alice will be unable to decipher it immediately. She must wait 
to receive the round key chosen by Bob. Upon receipt of this key, Alice will be 
able to decipher the message and check it for semantic consistency. With dove-
tailing, if Eve is present, Alice will notice a tripling of the expected wait time. 

5.2. Why Scenario 3 works correctly 

When Eve is present, it is convenient to refer to the round key selected by 
Alice as k ¼ kA, to distinguish it from a round key kE chosen by Eve. 

A MitM must, in some way, relay messages between the communicants. 
Although Eve knows yA and yB, which will be different when she is present, 
she does not initially know kA, and hence she does not initially know its salted 
version k0A. Two of her choices are relay Ek0A(m) from Alice to Bob without 
modification, or first determine kA and use it to decrypt Ek0A(m) and then relay 
a re-encryption Ek0E(m), where k0E ¼ trunc128(h(kE, yB)) is the salted key using 
salt yB of another key kE chosen by Eve. Both strategies fail. 

If Eve relays Ek0A(m) without modification, Bob will detect the MitM 
because Bob is expecting Alice to use salt yB, but Alice used yA. Importantly, 
the security of E and h prevent Eve from finding another key that Bob could 
use with salt yB to decipher the unmodified relayed message. Furthermore, 
Eve cannot modify the plaintext without detection because doing so would 
create a semantic irregularity. 

If Eve first determines kA, she must wait the time expected by Alice. She can 
try to cheat by waiting slightly less (hoping network latency will cause the key 
request not to arrive too soon), but if she waits substantially less, Alice will 
detect that Eve’s key-request arrived too soon (in less than the expected wait 
time). Since Bob will eventually wait the expected amount of time, Eve will 
have caused the elapsed time for Bob’s response to reach Alice to have at least 
doubled. Alice will notice this increased latency (Figure 4). 

5.3. Constant vs. variable wait time 

For the agreed upon wait time, we recommend using a constant wait time. 
This wait time should be carefully selected to be large in comparison with 
typically experienced network latencies, also considering the time it takes 
for the recipient to construct a response. A doubling of this time should be 
clearly noticeable to the communicants. A wait time could be chosen based 
on a typical maximum delay for the type of network being used. 

Our suggestion is a simplification and security improvement over Chaum’s 
proposal. Without giving details, Chaum originally proposed that variable wait 
times be determined from the y values. For example, one might first choose a 
small number (e.g., 2 or 4) of wait times. Then, one might use y as a seed into a 
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pseudorandom number generator to produce a sequence of values r1, r2, ….  
For each round i, use ri to select a wait time for that round, selecting from 
the small chosen set of possible wait times. Observed wait times significantly 
different from those expected would be evidence of a MitM. 

Originally, Chaum felt that variable wait times offered another check 
on whether yA ¼ yB.8 However, such an additional check is unnecessary. 
Furthermore, as realized by Chaum, with variable wait times, not all time 
observations will yield useful evidence (i.e., if Alice is expecting a long wait 
time, and Bob is waiting a short time, then Eve can delay her responses to 
Alice without detection). 

6. Experimental evaluation of Scenario 3 

To evaluate how well Chaum’s protocol with Scenario 3 works, we implemen-
ted it and collected timing data, with and without a MitM. We now describe 
our implementation and experimental methods and summarize the results of 

Figure 4. Scenario 3, with Eve present. Alice encrypts message m1 using k0A, a randomly selected 
key kA salted with her string pair yA. Because Bob is expecting Alice to use the different salt yB, Eve 
must first obtain kA before relaying m1 to Bob. Doing so forces Eve to double the expected wait 
time observed by Alice before Alice receives Bob's reply message m2. Alice will terminate the 
protocol if the key request arrives too soon.  

8Private communications with David Chaum.  
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our timing studies. Our results show that the protocol with Scenario 3 is 
realizable and effective. 

6.1. Purpose 

The main purpose of our experimental work is to provide an initial evaluation 
of the feasibility and effectiveness of Chaum’s protocol with Scenario 3. We 
also wish to confirm that our foregoing discussion has addressed all crucial 
issues and to uncover any possible neglected pragmatic concerns. 

6.2. Implementation 

In our demonstration version, two subjects can engage in a text-messaging 
conversation by typing messages into windows on separate laptop machines 
connected through a server on our university’s network. When Eve is present, 
her code runs on Alice’s laptop. 

When a communicant clicks the send button, a software client transfers a 
text file from the sender’s machine to the recipient’s machine. For con-
venience, and invisible to the communicants, we implemented this file trans-
fer using Dropbox (Drago et al. 2012), with clients for Alice and Bob sharing a 
Dropbox folder on their separate machines. 

We choose to use Dropbox because it provides a simple means for imple-
menting text-messaging communications through a real network, and because 
it exemplifies a large-latency communication system (i.e., Dropbox is slow). 
For comparison, we also tested the system using a faster file-transfer technique: 
Sharing a single machine, clients for Alice and Bob simply moved files within 
the same file system. With Dropbox, typical times to transfer a file from one 
machine to the other were approximately 60–180 seconds, compared with 
approximately 200 milliseconds for our faster alternative. 

We implemented Chaum’s protocol in JAVA using the javax.crypto API 
(Oracle, “Java Cryptography”; Oracle, “Pakage Javax.crypto”). We used AES 
encryption with 128-bit keys and message blocks, and SHA-3 hash which 
produces a 160-bit output. We computed the one-way function as SHA-3. 

We carried our timing studies using a HP-Pavilion dv6 laptop with an Intel 
(R) Core (TM) i7 2.20 GHz processor using 4.00 GB RAM running under 
64-bit Windows 7. 

Our implementation permits human subjects to play the roles of Alice and 
Bob. The goal of our implementation, however, is to demonstrate feasibility 
and to collect timing data, not to provide polished and secure code. 

6.3. Methods 

We collected timing data on several executions of Scenario 3, with four “dove- 
tailed” rounds per conversation (see Section 5.1), creating four observed wait 
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times per protocol instance. We did so separately with and without Eve 
present. When Eve was present, we followed the typical pattern of behavior 
for Eve described in Figure 4. 

We collected timing data both with real subjects carrying on a conversation 
with text-messaging and with a basic computer simulation of the packet 
exchanges in such a conversation (without meaningful semantic content). 
In this simulation, each text message comprised 50 characters. 

For our “fast” network, we set the required wait time to be 5,000 millise-
conds. We do not report data from our “slow” network because our subjects 
found it annoyingly slow. 

6.4. Timing study results 

Figures 5 and 6 show the observed wait times in executions of a four-round 
protocol, with and without a MitM. Figure 5 shows wait times from 22 
instances of a computer simulation of a conversation, using our “fast” network 
(Eve was present in 11 instances). Figure 6 shows waits times from ten 
instances with human communicants also using our “fast” network (Eve was 
present in five instances). 

6.5. Analysis 

For the computer-simulated conversation (Figure 5), there is a clean separ-
ation between when Eve is present or not present. Due to the dovetailing, 
the wait time triples when Eve is present. With human subjects (Figure 6), 

Figure 5. Histogram of elapsed wait times for Scenario 3, with and without Eve, with simulated 
communicants.  

Figure 6. Histogram of elapsed wait times for Scenario 3, with and without Eve, with human 
communicants.  
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these two cases are less cleanly separated, due to significant variation in the 
time subjects took to construct responses. Fast response times prove that 
Eve is not present, and slow response times are inconclusive. 

These results suggest that the communicants should endeavour to respond 
quickly during the initial part of each conversation, until they reach assurance 
that Eve is not present. 

7. Discussion 

We now discuss several issues, observations, and open problems related 
to Chaum’s protocol, including when the protocol is useful and the 
decision-making process for deciding if a MitM is present. 

7.1. Contexts when protocol is useful 

The protocol is useful for conversations when the communicants have not 
established authenticated public keys or other shared secrets, and there 
is no mechanism for obtaining their authenticated public keys. Once the 
communicants establish authenticated public keys or shared secrets, other 
more traditional and robust protocols could be applied. 

In the future, it may be easier for more people to exchange public keys 
assuredly. For example, one could include a QR code of one’s public key 
on a business card. Yet, today, many people still find it a challenge to 
exchange authenticated public keys. 

Using the protocol for first-time conversations might sometimes be attract-
ive because the communicants might not have yet established authenticated 
keys. On the other hand, using the protocol for first-time conversations is 
problematic because the communicants might not have established required 
common knowledge or latency characteristics of the communications channel. 

In principle, after one trusted communication, the parties could establish 
authenticated public keys. Even so, there still can be value in the Chaum pro-
tocol, for example, for environments which lack the infrastructure to establish 
and store authenticated public keys, or as a layer of protection against an 
attack that tampered with the authenticated public keys. 

7.2. Issues and observations 

As does the Interlock (Rivest and Shamir 1984) protocol, Chaum’s protocol 
leverages cryptographic commitment to detect a MitM in a variety of scenarios. 
Chaum’s protocol improves on Interlock by resisting an adversary with zero 
network latency. It improves on the Zfone (Wikipedia, “Zfone”) protocol by 
resisting an adversary who can impersonate the voices of the communicants. 
Although unusual delays can cause the protocol to suspect a MitM is present 
when one is not, the protocol will always detect a MitM when present. 
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The main limitation of Chaum’s protocol is its assumption, also held by 
Interlock, that the communicants can detect any semantic irregularity in 
the conversation. This assumption places an undue burden on the communi-
cants and violates the security principle that network security protocols 
should not depend on the judgements of the communicants. Another limi-
tation is that the mandatory wait periods necessarily increase communication 
latency. 

Furthermore, the communications must use a network for which they have 
an accurate estimate of the maximum likely network latency. The larger this 
maximum latency, the more the protocol will increase communication 
latency. On the other hand, because the protocol must only be run during 
the initial few rounds of the conversation, any increase in communication 
latency would be limited. 

Alice and Bob might begin each session with some personal talk about 
some personal experiences that they shared in common that only they would 
know. Only after they verify that there is no MitM, should they start the sensi-
tive part of the conversation. If a MitM was not present initially, she could 
not insert herself later in the session; furthermore, future sessions with those 
public keys would also be assured. 

In Scenario 3, the dependence on timing limits the utility of the protocol to 
synchronous conversations where both parties are texting on-line in a fashion 
where the time for each response is fairly predictable. Scenario 3 does not 
work for asynchronous text-messaging where one or both parties might wait 
long and unpredictable amounts of time before responding. 

The patent application does not clearly explain how the communicants 
should agree on the expected wait times. Chaum assumes that the communi-
cants typically have a history of communicating with each other, or with other 
people on similar networks, from which the wait time could be tuned and 
the observed elapsed times could be interpreted. This assumption might not 
always apply, and it raises the possibility that Eve might interfere with 
communications that influence the agreed upon wait time. 

Some of the scenarios assume a “common public string model” of security 
in which the participants share a common string also known to the adversary. 
For example, in Scenario 1, the communicants refer to a book or database of 
jokes. In Scenario 3, the pre-agreed upon wait time(s) might also be viewed in 
this context. 

Scenario 1 also assumes that the communicants can embed information, at 
least in small amounts, into a semantically-sensible conversation. (e.g., refer-
ring to a joke or punch line). This assumption is similar in spirit to the stron-
ger assumption in Zfone that each communicant can utter a short string in a 
way that the adversary cannot impersonate. These are powerful assumptions: 
If the communicants could so embed their public keys (or hash fingerprints of 
these keys) into the conversation with integrity, then the communicants could 
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exchange authenticated public keys. Yet, some people may prefer to accept 
these assumptions over those underlying SSL/TLS. 

Because the protocol can falsely suspect a MitM when none is present, an 
adversary might be able to cause various mischief, including denial of service, 
by simply causing an increase in network latency, for example by sending large 
video files. Before an actual attack, the adversary might provoke a series of false 
alarms, hoping that subsequently during the real attack, the communicants will 
have become insensitive to a true alarm. Similarly, in the “Bayesian” decision- 
making interpretation (see Section 7.3), it might be confusing to the commu-
nicants what to do when the threat indicator light shines “amber” (caution). 

Although the patent application does not do so, it must be specified what 
should be done in each possible error state, including if a packet is lost in tran-
sit or if the session abends. In Scenario 3, any round with a lost packet should 
be viewed as unsuccessful and suspicious and should not be interpreted as evi-
dence of the absence of a MitM. If the session abends, the participants should 
restart the protocol from the beginning. Failure to handle all such error states 
properly can create vulnerabilities. 

Because of the security need to view lost packets with suspicion, the proto-
col as proposed has significant limitations for use in unreliable communica-
tions, including text-messaging with poor reception. 

In practice, the communicants will likely share only a limited amount of 
private information needed to establish semantic consistency (e.g., “What 
happened at dinner last night?”). Consequently, an issue arises if this private 
shared information is exhausted. An attacker might try to force the commu-
nicants to exhaust their shared information by causing them to restart the 
protocol repeatedly, for example, under the guise of lost packets. 

7.3. The decision-making process 

Chaum conceived of Phase III not necessarily as a “categorical” process, where 
after a short fixed number of communications each party would reach a certain 
conclusion. Rather, he envisioned an interpretive “Bayesian” process: Each 
communicant starts with an a priori belief in the presence of Eve, and updates 
that belief during the conversation in light of evidence derived from the scen-
ario. Each communicant interprets the evidence in the context of his or her 
expectations of certain properties of the communication channel and commu-
nicants, perhaps based in part on prior history of similar communications 
between the parties. For decision making, each session is independent. 

Concretely, there might be a colored light whose color signals the current 
degree of belief in the presence of a MitM. This light might start out amber 
(caution), and during the conversation the color might change to green (safe) 
or red (suspected MitM).9 

9Ibid.  
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In Scenario 3, a single round without undue delay is convincing evidence of 
no MitM. A long wait time, however, could be caused by a MitM or by 
unusual network latency. Upon observing a long wait for each of several 
rounds, taking a categorical view, Alice would either restart the protocol 
suspecting unusual network latency, or terminate the protocol suspecting a 
MitM. Taking a more flexible view, Alice might continue cautiously updating 
her belief in the possibility of a MitM. 

While the Bayesian decision-making interpretation of the protocol offers 
some attractive flexibility, and although it might reduce the number of false 
alarms, we dislike its complexity and its need to be applied in more rounds. 
We prefer the simpler categorical interpretation, which can be carried out in a 
small number of rounds. 

7.4. Open problems 

Open problems include formally stating and proving the security properties of 
the protocol in a precise mathematical fashion. One difficulty in doing so is 
precisely characterizing the vaguely stated assumptions, for example, that 
communicants can detect semantic irregularities, or that they can embed a 
short string into semantic content. 

Another approach is to analyze the protocol with formal tools for analyzing 
cryptographic protocols, though most such tools are not well configured to 
analyze forced timing properties. 

We focused on the text-messaging scenario. It would be interesting to 
explore the other scenarios, too. 

It would also be interesting to perform a careful usability study of the 
protocol. Such a study might compare Chaum’s protocol with SSL/TLS and 
a baseline text-messaging communications session without any protections. 

8. Conclusion 

We explained Chaum’s protocol, which detects a MitM using minimal 
assumptions and technology. We implemented Scenario 3 of the protocol 
for text-messaging and through timing studies demonstrated that it works 
effectively. When it is used, for simplicity, we recommend that it be implemen-
ted in its “categorical” style of decision making and to use constant wait times. 

The protocol is especially useful when the communicants have no available 
method for exchanging authenticated public keys. In comparison with the 
Interlock and Zfone protocols, it protects against more powerful adversaries. 
A nice feature is that it always detects Eve when she is present. 

It is possible, however, for the protocol to detect Eve falsely, for example, if 
there are unusual network delays. Also, through mandatory waiting periods, 
the protocol necessarily increases communication latency. Although the 
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protocol aims to use minimal assumptions, it in fact requires several strong 
assumptions: Each communicant must detect any fabricated conversation; 
the network latency is always or mostly below a specified maximum; and 
(for some scenarios) each communicant can embed information into the 
semantic content of a conversation. 

Chaum’s protocol illustrates a tension between two desirable principles for 
building secure systems: minimal assumptions and ease-of-use. There is 
considerable merit to the principle that fewer assumptions tend to result in 
greater security. In particular, with fewer assumptions, there are fewer 
assumptions that might be violated. Chaum’s contribution is a new protocol 
for detecting MitM with minimal assumptions. Secure systems, however, 
require some assumed security foundation, and a more substantial foundation 
can result in protocols that are easier to use. Protocols that are easier to use 
are more likely to be used and used correctly. Unfortunately, while simpler 
in some respects than SSL/TLS, Chaum’s protocol, as does the Interlock 
protocol, has an element that makes it harder to use: The communicants must 
detect any semantic irregularity in the conversation. 

It is a serious limitation of any protocol to require the communicants to make 
any judgements. We feel the protocol is simple enough for many communicants 
to carry it out, but we distrust many of them to detect semantic irregularity assur-
edly. We strongly prefer protocols that are fully automatic and that yield high- 
assurance categorical results, even if they require stronger assumptions, provided 
the assumptions are feasible. For this reason, we prefer detecting a MitM with the 
robust, albeit somewhat complex, SSL/TLS protocols and to provide security 
environments that include a trustworthy public-key infrastructure, or some other 
suitable mechanism for assuredly exchanging authenticated public keys. 

Improving on the Interlock protocol and exploiting the power of crypto-
graphic commitments, Chaum’s protocol leverages informal shared secrets 
to enable the communicants to detect a MitM, after exchanging public keys 
in an unauthenticated fashion. These informal shared secrets (i.e., common 
knowledge among the communicants) permit the communicants to detect 
semantic irregularities. Some people might prefer to accept the assumptions 
underlying Chaum’s protocol rather than those underlying SSL/TLS. Our 
prototype demonstrates that the protocol works effectively, even when the 
adversary can send and receive messages with zero network latency. 

We hope that our explication and informal analysis of Chaum’s protocol 
will help others appreciate and learn from its novel and interesting facets. 

Appendix: The scenarios and common friends 

We briefly summarize how each of four scenarios works to enable Alice and 
Bob to determine if their string pairs y and y0 are different, indicating a MitM. 
We also briefly summarize how to leverage trust through common friends. 
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A.1. Four scenarios 

A.1.1. Scenario 1 (live audio/visual, common reference) 
As described in paragraphs 0048–0049 of the patent application (Chaum 
2006), each communicant uses his or her y value as an index into a pre-agreed 
upon public database (e.g., of jokes). Alice speaks the joke question, and Bob 
speaks the punch line. Each of these utterances is embedded into a conver-
sation with semantic content. Each party verifies that the punch line matches 
the question. 

There are many ways in which this idea can be embodied. One way, 
suggested by Chaum, is as follows.10 Alice picks a random key k and salts it 
with y (e.g., ks ¼ trunc128(h(k, y)). Alice sends to Bob the joke question m 
encrypted as Eks

(m). Bob then sends to Alice the punch line. After Alice 
receives the punch line, she sends Bob the unsalted key k, from which he 
can compute ks and decrypt the question. Each side verifies that the punch 
line matches the question. 

In another embodiment, each communicant interprets his or her y as the 
sequence of binary choices in some pre-agreed upon two-party game. With 
overwhelming probability, the outcome of the game will be the same if and 
only if their strings match. 

A.1.2. Scenario 2 (live audio/visual, directional flow) 
As described in paragraphs 0050–0054 of the patent application (Chaum 
2009), each communicant derives from his or her string y four numbers, y1, 
y2, y3, y4, which they interpret as time intervals. The communicants then use 
these time intervals to regulate the directional flow of their communications. 

During time interval y1, only Bob speaks to Alice. During interval y2, the 
communications are bidirectional. During interval y3, only Alice speaks to 
Bob, and during interval y4, neither party speaks. Throughout intervals y1– 
y3, each communicant engages in a semantically meaningful conversation. 

If the y strings held by Alice and Bob differ, then a MitM will be unable to 
prevent the communicants from noticing either a deviation from the expected 
pattern of directional flow, unnatural delays in the conversation, or semantic 
irregularities. 

A.1.3. Scenario 3 (text-messaging, timing) 
As described in paragraphs 0055–0059 and Figure 4 of the patent application 
(Chaum 2006), Alice picks a key k at random and salts it with her y to produce 
the salted key ks. She sends a message encrypted with ks. After waiting a speci-
fied (we recommend constant) time, Bob sends Alice a key request, in 
response to which Alice sends the unsalted key k. 
10Ibid.  
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As explained in Section 5, this scenario forces Eve to notably increase the time 
Alice observes from sending a message to Bob and receiving his response. This 
notable increase in time is not the result of any network latency caused by Eve. 
Before relaying Alice’s message to Bob, Eve must first send a key request to Alice. 
Bob will always wait to send his key request, and if Eve fails to wait long enough, 
Alice will notice that she received a key request too soon. 

This scenario proceeds in a sequence of rounds, where in each round Alice 
and Bob reverse their roles as sender and recipient. In one interpretation, 
these rounds overlap in the sense that the last “pong” of Bob to Alice of 
the current round is also the first “ping” of Bob to Alice in the next round. 

A.1.4. Scenario 4 (live audio/video chat, jitter) 
As described in paragraphs 0060–0062 of the patent application (Chaum 
2006), this scenario is a variation of Scenario 3 in which there is a constant 
stream of packets. Unlike Scenario 3, in Scenario 4, the order of messages 
is strictly sequential and without overlapping rounds. When a MitM is 
present, the communicants will notice a jitter or delay in the communications. 

Occasionally, Alice will “mark” a packet by encrypting it using a salted 
key as described in Scenario 3. Alice will then include the unsalted key in 
the payload of the next packet. 

Thus, even if Eve has zero network latency, she is forced to delay the stream 
of marked packets by one packet. The assumption is that this delay will be 
sufficient to cause a detectable jitter. 

As with Scenario 3, Scenario 4 proceeds in a sequence of rounds, where in 
each round Alice and Bob reverse their roles as sender and recipient. 

A.2. Common friends 

We briefly summarize three methods, which we shall call Techniques i–iii, 
that enable communicants to leverage their trusted credentials of others in 
a bottom-up web of trust, exploiting common “friends” and common “friends 
of friends.” For more details, see (Chaum 2006) and (Newton 2010). 

A.2.1. Technique i (common friend) 
If Alice and Bob each possess the trusted credentials (public key) of a known 
common friend, they can leverage this credential to establish trust in each 
other’s public keys. Bob sends Alice a list of credentials for possible common 
friends. Alice returns a commitment of these credentials and marks them 
using her private key. Bob then proves his identity to Alice by marking one 
of Alice’s credentials and checking the committed credentials. Finally, Alice 
repeats the entire process playing the role of Bob. Failure of any proof detects 
Eve. 
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A.2.2. Technique ii (anonymous common friend) 
This technique is Similar to Technique i, but Alice and Bob mask their 
authenticators with random numbers to avoid revealing the identity of the 
common friend, both to each other and to Eve. 

A.2.3. Technique iii (common friend of friend) 
This technique leverages the situation where Alice trusts the credentials of a 
Friend-1; Bob trusts the credential of a Friend-2; and Friend-1 shares a com-
mon trusted friend with Friend 2. First, Friend-1 and Friend-2 prove to each 
other that their credentials are fresh. Second, using Technique i, Friend-1 and 
Alice re-establish trust. Similarly, Bob and Friend-2 re-establish trust. Third, 
using Technique i, Alice and Bob establish trust. 
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