
CRYPTOLOGIA
http://dx.doi.org/10.1080/01611194.2015.1135487

Chaum's protocol for detecting man-in-the-middle:
Explanation, demonstration, and timing studies for a
text-messaging scenario
Alan T. Sherman, John Seymour, Akshayraj Kore, and William Newton

ABSTRACT
This article explains, demonstrates, and evaluates Chaum’s
protocol for detecting a man-in-the-middle (MitM) of text-
messaging network communications. MitM attacks pose
serious risks to many network communications. Networks often
mitigate these risks with robust protocols, such as TLS, which
assume some type of public-key infrastructure that provides a
mechanism for the authenticated exchange of public keys.
By contrast, Chaum’s protocol aims to detect a MitM with
minimal assumptions and technology, and in particular without
assuming the authenticated exchange of public keys. Chaum
assumes that the eavesdropper can “sound like” the commu-
nicants but that the eavesdropper cannot fabricate sensible
conversations.

Using an encryption function and one-way function, Chaum’s
protocol works in three phases. In Phase I, the communicants
exchange their public keys. In Phase II, each communicant
generates a random string. The first communicant cryptogra-
phically commits to that string, and sends the string to the other
communicant after receiving the other’s string. In Phase III, using
any of four different “scenarios” the communicants verify that
each possesses the same two strings. The protocol forces any
MitM to cause the communicants to possess different pairs of
strings. The text-messaging scenario is similar to a forced-latency
protocol proposed by Wilcox-O’Hearn in 2003.

This article implements and experimentally demonstrates the
effectiveness of the third scenario, which uses timing to detect a
MitM in text-messaging. Even assuming a MitM can send
messages without any network latency, the protocol forces the
MitM to cause delays noticeable by the communicants. This
article is the first to explain, demonstrate, and evaluate Chaum’s
protocol, which Chaum described only in an abandoned and
nearly inscrutable patent application.

ARTICLE HISTORY
Received 22 August 2015
Accepted 28 November 2015

KEYWORDS
Chaum’s man-in-the-middle
protocol; cryptanalysis;
forced latency; Interlock
protocol; key establishment;
man-in-the-middle (MitM);
network security protocols;
U.S. Patent Application
2006/0218636 A1; Zfone
protocol

1. Introduction

In 2006, David Chaum hosted seven highly capable cryptographers1 who
attend the Crypto Conference to a fancy three-hour lunch, during which he
explained his latest idea: a new protocol for detecting man-in-the-middle

CONTACT Alan T. Sherman sherman@umbc.edu Cyber Defense Lab, CSEE Department, University of
Maryland, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ucry.
1Gilles Brassard, Ueli Maurer, Rafail Ostrovsky, Ronald Rivest, Victor Shoup, Zooko Wilcox-O’Hearn, and Moti Yung.
© 2016 Taylor & Francis

http://dx.doi.org/10.1080/01611194.2015.1135487
mailto:sherman@umbc.edu
http://www.tandfonline.com/ucry

(MitM) in a variety of network communications using minimal assumptions
and technology. Chaum provided the participants in advance with diagrams
and written materials, yet by the end of the affair, only one of these august
guests seemed to understand the proposal. Subsequently, Chaum worked
with one guest (Shoup), without avail, in an attempt to prove mathematical
properties of the protocol.2 Since then, few have even heard of the protocol,
which Chaum described only in a now abandoned U.S. patent application
(Chaum 2006) that is nearly inscrutable.

MitM attacks remain a significant threat to network communications. For
example, in February 2013, Dyn Research (2013) detected numerous MitM
attacks that redirected Internet traffic from major financial institutions, gov-
ernments, network service providers, and others, from the United States,
South Korea, Germany, and other countries through the Internet Service Pro-
vider GlobalOneBel in Belarus. The attack also tampered with network trace
utilities, making it difficult for a victim (e.g., in Virginia) to realize that some-
one in Minsk could monitor his web activities.

By mid-2014, blogs reported that the Chinese computer company Lenovo
was shipping new computers with the Superfish malware (The Next Web.
com). Superfish implements a powerful MitM attack, defeating SSL
implementations by installing a bogus self-signed certificate authority.
Although this malware apparently performed “only” as adware, it had the
alarming potential to do much more. These two examples illustrate the need
for better protection against MitM threats, including defense strategies that go
beyond current SSL implementations.

Building on prior initial work of Newton (2010) and Seymour (2013), this
article explains Chaum’s protocol, demonstrates its effectiveness with timing
studies in a text-messaging scenario, and evaluates its utility.

Chaum’s protocol proposes a mitigation to the significant threat of eaves-
dropping by an adversary who inserts herself between two communicants in a
network. Its main distinguishing characteristic is to use minimal assumptions
and technology, building on his belief that fewer assumptions tend to lead to
greater security. In particular, Chaum does not assume the existence of any
trusted mechanism for communicants to exchange authenticated public keys.
By contrast, the widely-used SSL/TLS protocols (Dierks and Rescorla 2008;
Rescorla 2001) require some type of assured public-key infrastructure (PKI)
that enables communicants to exchange authenticated public keys. In com-
parison with the Interlock (Rivest and Shamir 1984) and Zfone (Wikipedia,
“Zfone”) protocols, Chaum’s protocol makes fewer assumptions and protects
against a stronger adversary. The text-messaging scenario we analyze is
similar to a little-known forced-latency protocol proposed by Wilcox-
O’Hearn (Langley 2003; Wilcox-O’Hearn 2003) in 2003 on web postings.

2Private communications with David Chaum.

2 A. T. SHERMAN ET AL.

As illustrated in our accompanying animation (Cyber Defense Lab), the pro-
tocol works in three phases. First, the communicants exchange public keys with-
out authentication assurance. Second, each communicant generates a random
string. The first communicant commits to it, and sends it to the other communi-
cant after receiving the other’s string. Third, using one of four different scenar-
ios, the communicants check if they possess the same two strings. The protocol,
by means of the string commitment, forces any MitM to cause the communi-
cants to possess different pairs of strings. We focus on the scenario for text-mes-
saging, which we consider the simplest and most practical. In this multi-round
scenario, the communicants detect a MitM through increased message delays.

The protocol has asymmetrical security properties: If the protocol com-
pletes even one initial round successfully (with a not-too-long delay), then
the communicants are certain that there is no MitM. If, however, one or more
rounds yield a sufficiently long delay, then the communicants strongly suspect
a MitM (but the delay might have been caused by other reasons).

The protocol is especially useful when there is no available mechanism for
exchanging authenticated public keys. For example, having met Bob earlier in
the day at a conference, Alice later converses with Bob via text-messaging.

We experimentally demonstrate the effectiveness of the protocol. To protect
against MitM, communicants must choose what assumptions they wish to
accept. For example, the assumptions underlying TLS include a trusted PKI.
Chaum’s protocol assumes each communicant can detect semantic irregulari-
ties in the communication and knows an upper bound on the maximum
delivery time of a text message. There are situations in which Chaum’s protocol
adds value (e.g., when a suitable PKI is not available). Regardless, there is merit
in understanding its ideas and mechanisms, as well as the necessary and
sufficient assumptions to effect secure sessions. Given the difficulties previous
researchers encountered with this protocol, it is non-trivial from the patent
application simply to understand how it works.

Our contributions include
.� The first clear and correct explanation of Chaum’s protocol;
.� The first implementation and demonstration of Chaum’s protocol, which

we carry out using a text-messaging scenario;
.� Experimental timing data showing that the protocol works effectively; and
.� A simplification of the protocol for text-messaging, which uses a constant

wait time that does not depend on the committed string.

2. Background and previous work

Defenders against MitM threats have relied primarily on three strategies:
establishing authenticated public keys, exploiting shared secrets among the
communicants, and leveraging characteristics of the communication channel
to detect a MitM without the exchange of authenticated public keys.

CRYPTOLOGIA 3

Blake-Wilson, Johnson, and Menezes (1997) surveyed a variety of key
agreement protocols, and Blake-Wilson and Menezes (1999) and Johnston
and Gemmell (2002) analyzed authenticated Diffie-Hellman key agreement
protocols.

A variety of mechanisms exist to help communicants establish authenti-
cated public keys, including certificates, PKI, and DNSSEC. Building on
certificates, the SSL/TLS protocols (Dierks and Rescorla 2008; Resorla 2001)
enable communicants to establish secure sessions with confidentiality,
authentication, and integrity. In some applications, however, mechanisms
for exchanging authenticated public keys are not easily available, and they
add complexity.

Lightweight “bottom-up” techniques, such as PGP fingerprints, have
limited security (e.g., sometimes an adversary can easily edit the fingerprint
without detection), and they can erode privacy by publicly associating
identities and public keys.

Barak and Colleagues (2005) studied secure multi-party computations
without authentication.

Meadows (2003) and Cremers, Lafourcade, and Nadeall (2009) surveyed a
variety of tools for analyzing cryptographic protocols. Such tools include
Cryptographic Protcol Shapes Analyzer (CPSA) (Doghmi, Guttman, and
Thayer 2007),3 Maude-NPA,4 and Scyther.5 Although none of these tools is
configured to reason about time, it ought to be possible to adapt some of them
to perform temporal reasoning using their ability to deal with sequences of
events.

In the rest of this section, we explain how Chaum’s protocol is stronger
than the Interlock and Zfone protocols, which are two well-known protocols
for detecting a MitM without assuming an authenticated exchange of public
keys. We also review the forced-latency protocol of Wilcox-O’Hearn and
the prosecution history of Chaum’s patent application.

2.1. Interlock protocol

In 1984, Rivest and Shamir published the Interlock protocol for detecting a
MitM, Eve. For Alice to send a message m1 to Bob, using what she believes
to be Bob’s public key, Alice encrypts the message to produce a ciphertext
c1. Alice divides c1 into two halfs c11 and c12. Similarly, Bob encrypts his
message M1 to produce a ciphertext C1, which Bob divides into two halfs
C11 and C12. Alice sends c11 to Bob. After Bob receives c11, Bob sends C11
to Alice. After Alice receives C11, Alice sends c12 to Bob. After Bob receives
c12, Bob sends C12 to Alice.
3https://hackage.haskell.org/package/cpsa
4maude.cs.uiuc.edu/tools/Maude-NPA/
5http://www.cs.ox.ac.uk/people/cas.cremers/scyther/

4 A. T. SHERMAN ET AL.

By sending half the ciphertext, Alice cryptographically commits to the mess-
age in a way that Eve cannot exploit. Eve cannot decrypt the ciphertext without
the entire ciphertext, yet the protocol demands that Eve send a transmission to
Bob before Alice will transmit the second half of her ciphertext. Consequently,
Alice or Bob will detect Eve, either by detecting a semantic irregularity in the
conversation or a timing delay. The communicants will detect this delay either
in real time units or by an answer to a question being delayed by one trans-
mitted message: A question in Alice’s message m1 might be answered in Bob’s
response M3 rather than in Bob’s immediate response M2. As with Chaum’s
protocol, the Interlock protocol assumes that Eve cannot fabricate sensible
conversations.

The protocol can be used in full-duplex or half-duplex modes. In full-duplex,
each communicant transmits a message in each cycle. In half-duplex, the
sender sends the entire message in two halfs before the recipient sends his
response. When used in half-duplex, the communicants can detect a MitM only
by assuming that Eve must increase the latency of the network communica-
tions, since she must receive the entire message before constructing a response.

Thus, the Interlock protocol assumes a weaker adversary than does
Chaum’s protocol. Chaum’s protocol is robust against an adversary with
zero network latency, but such a powerful adversary can defeat the Interlock
protocol in half-duplex mode.

Bellovin and Merritt, and Ellison point out additional weaknesses of
the Interlock protocol, some of which can be mitigated by forward latency
(Wikipedia, “Interlock Proticol”).

Rivest and Shamir assumed that the communicants can recognize each
other’s voices, but there is nothing in the Interlock protocol that demands this
assumption.

2.2. Zfone protocol

Zimmermann’s Zfone (Wikipedia, “Zfone”) software secures Voice over Inter-
net Protocol (VoIP) by implementing the 2011 ZRTP protocol (Zimmermann,
Johnston, and Callas 2011), which provides some protection against a
MitM. Without relying on any authenticated exchange of public keys, Zfone
establishes an ephemeral Diffie-Hellman key pair. Zfone further protects
subsequent communications between the parties by cached key material, using
ideas similar to those described by Abdo et al. (2006).

In a crucial step of ZRTP, each communicant reads a displayed “short
authentication string” (SAS), while the other verifies the utterance against
the displayed SAS. ZRTP assumes that during this step, each communicant
can recognize each other’s voice, and that the adversary cannot sound like
the speaker. The SAS is a hash of the public key. Vaudenay (1995) gave a basis
of this protocol.

CRYPTOLOGIA 5

Thus, the Zfone protocol assumes a weaker adversary than does Chaum’s
protocol. Chaum’s protocol is robust against an adversary who can sound like
the communicants (e.g., by recording and playback), but such an adversary
can defeat the Zfone protocol.

2.3. Forced latency

In the winter of 1999/2000, Wilcox-O’Hearn devised a forced-latency protocol,
which is very similar to Chaum’s text-messaging scenario.6 Wilcox-O’Hearn
described his protocol on his blog on 31 March 2003, and Langley offered
another explanation of it on 6 April 2003. The idea of forced latency to detect
MitM dates back to at least 1982 from the Interlock protocol.

In the forced-latency protocol, Alice sends a commitment of her message
M, waits an agreed-upon time τ, and then sends M. Alice suspects a MitM
if Bob’s response arrives more than τ seconds after Alice sends M.

Wilcox-O’Hearn proposed his protocol in the context of preventing what he
calls the “chess grandmaster attack,” in which an unscrupulous chess player
repeats his opponent’s moves against a grandmaster in a concurrently-played
game and then copies the grandmaster’s replies in the original game. Recently,
Ed Zieglar observed that the Wilcox-O’Hearn protocol is vulnerable to an
attack that exploits small message spaces (e.g., small number of possible chess
moves): Simultaneously initiate a protocol instance for each possible message.7

2.4. Prosecution history of Chaum’s patent application

On 24 March 2006, building on his provisional application filed 24 March
2005, Chaum (2006) filed a U.S. patent application on a communications
systems embodying his MitM detection protocol. On 30 December 2008,
the Patent Office declared the application abandoned. Chaum had never
responded to a communication dated 18 June 2008, rejecting all 14 claims
both on the basis of indefiniteness and on the basis of anticipation over the
2006 patent application of Abdo and Colleagues, which is a continuation of
a 2002 patent application. The examiner also rejected the last six claims,
declaring, “There is no result produced by the claimed system that is useful,
concrete, and tangible.” (U.S. Patent Office, p. 3).

It is not surprising that an examiner found Chaum’s application indefinite
given that six out of seven hand-picked extraordinary “dining cryptographers”
could not understand the proposal. A patent must be clear and understand-
able to a person of ordinary skill in the art. We suspect that the examiner,
too, did not understand the application and hence could not appreciate its
novel and possibly useful contributions.
6Private communications with Zooko Wilcox-O’Hearn.
7Private communications with Ed Zieglar.

6 A. T. SHERMAN ET AL.

It is our opinion that Abdo and Colleagues does not anticipate
Chaum. Abdo dealt with a different technique: to extend trust from a prior
authenticated session by saving shared secrets established during that session.
Wilcox-O’Hearn, however, did anticipate some claims, though his disclosures
are in a chess setting.

3. Assumptions and adversarial model

We assume no trusted third party nor any trusted mechanism for exchanging
authenticated public keys.

The primary goal of the adversary is to insert herself between the
communicants, relaying messages from each to the other, for the purpose
of eavesdropping on the conversation.

We say that the adversary has broken the protocol if she can read or modify
at least one bit of the plaintext conversation without detection. The protocol
does not aim to prevent an adversary from intercepting and relaying the
ciphertext without modification.

We assume a powerful adversary who can “sound like” each of the
communicants, either by recording and playing back transmissions of the
communicants, or by impersonating the sound of their voices. We assume,
however, that the adversary cannot “think like” either communicant; that
is, the adversary cannot fabricate sensible conversations without detection.
Thus, we assume that each communicant can detect any “semantic irregu-
larity” in the communications, as might be revealed, for example, by one of
them asking a personal question (e.g., “What did you eat with me at dinner
last Tuesday?”). The number of bits of such shared personal information is
limited.

We assume each communicant has a random number generator and
computationally-secure standard cryptographic primitives, including a one-
way function, encryption function, hash function, and pseudorandom
number generator.

We assume the adversary has powerful network capabilities including the
ability to send and receive network communications without any network
latency. The protocol aims to be secure even when the adversary’s network
capabilities greatly exceed those of the communicants.

Scenario 3 assumes each communicant can observe the time at which he or
she sends or receives any message. This scenario also assumes each communi-
cant knows a typical maximum time required to send a message and receive a
response, including the time to construct the response.

Some of the scenarios assume further that the communicants share a
common public string, such as a book or database of jokes, also known to
the adversary. Some also assume that the communicants can embed a short
string (e.g., an index into the common public string) in a semantically

CRYPTOLOGIA 7

meaningful utterance in such a way that the adversary cannot modify the
embedded string without detection.

4. The Chaum protocol

Chaum’s protocol works in three phases: (I) Exchange public keys without
authentication; (II) commit to a string; x and exchange string, and (III)
verify if the communicants possess the same strings. Each communicant will
possess the same pair of strings if and only if there is no eavesdropper in the
middle.

Separately, as we summarize in the appendix, Chaum additionally proposes
three ways for communicants to expand their “web of trust” by leveraging
their trust in the credentials (public keys) of common friends.

We shall assume Alice (A) is communicating with Bob (B), possibly in the
presence of eavesdropper Eve (E).

We assume that Alice and Bob must follow the protocol, but Eve may do
whatever she wishes. If either communicant detects non-compliance with
the protocol, that communicant terminates the protocol. Similarly, if either
communicant detects any semantic irregularity in the conversation, that
communicant terminates the protocol and assumes that Eve is present.

Two of Eve’s strategies are (1) block all communications between Alice
and Bob, and instead hold separate parallel conversations with each. The
assumption that Eve cannot fabricate sensible conversations ensures that
the communicants will detect this strategy, but no technical aspect of the
protocol prevents this strategy. (2) Sit in the middle between Alice and
Bob, relaying all messages from each to the other. In this second strategy,
the committed string forces Eve to establish separate string pairs with Alice
than with Bob. In Phase III, each scenario enables Alice and Bob to detect that
they possess different string pairs.

Throughout, we explain the protocol with the help of diagrams
showing what happens without Eve, and what might typically happen with
Eve present.

In Phase I, Alice and Bob exchange public keys and establish a session key.
All subsequent communications between Alice and Bob are encrypted with
this session key. Because the effectiveness of the protocol does not depend
on this layer of encryption, for simplicity and clarity, we omit it from all of
our protocol diagrams. Use of this session key forces Eve, if present, to
be present initially and throughout the conversation. Also, it protects the
conversation from anyone who does not know the session key.

Also for simplicity and clarity, we omit other standard details from our
protocol diagrams, such as the presence of unique sequence numbers,
timestamps, and protocol instantiation numbers cryptographically bound to
each communication.

8 A. T. SHERMAN ET AL.

4.1. Notation

Let Ek(m) denote the encryption of message m under key k; let f be a one-way
function; and let h be a cryptographic hash function. Let || denote string
concatenation. Let trunc128() mean truncate to 128 bits.

Let pA, pB, pE denote the public keys of Alice, Bob, and Eve, respectively,
and let sA, sB, sE denote the corresponding private keys.

Our notation, which differs from Chaum’s, relates to notation in Chaum’s
patent application as follows. Chaum introduces the symbols C and D, which
represent the communication devices (e.g., computers) of Alice and Bob,
respectively. Chaum denotes the public keys of Alice, Bob, and Eve as qc,
qd, and qf, respectively, appealing to a context involving discrete logarithms.
He denotes the corresponding private keys as c, d, and f. In the patent
application, rcd denotes a session key used by Alice and Bob. Chaum writes
the expression y ¼ x ⊕ x0 to denote a general combining operator ⊕, which
is not necessarily exclusive-or.

4.2. Phase I: Exchange public keys

Alice and Bob exchange public keys using any unauthenticated key exchange
protocol, such as the Diffie-Hellman protocol (Rescorla 1999). They also
establish a session key, used to encrypt all subsequent communications
between Alice and Bob.

After Phase I, there are two cases to consider: Eve was present, and Eve was
not present. If Eve was not present, then Alice and Bob exchanged their
correct public keys, and they established a session key known only to them.

If Eve was present, then unknown to Alice and Bob, Alice and Eve
exchanged public keys pA, pE and established a session key k1, while Eve
and Bob exchanged public keys pE, pB and established a session key k2. Alice
thinks pE is possibly Bob’s public key, and Bob thinks pE is possibly Alice’s
public key.

Only in Phase III will Alice and Bob learn which case is true.

4.3. Phase II: Commit to string x

Alice generates a random string xA and shares it with Bob, and Bob generates
a random string xB and shares it with Alice. Importantly, Alice commits to xA
by sending f(xA, pA, pB) before Bob shares xB. Without committing to xB, Bob
sends xB to Alice. After receiving xB, Alice shares xA.

Let x̂A denote the string Bob receives purportedly from Alice, and let x̂B
denote the string Alice receives purportedly from Bob. If Eve is present, the
string xA sent by Alice might not be the string x̂A received by Bob.

Alice computes the string pair yA ¼ xAjjx̂B, and Bob computes the string
pair yB ¼ x̂AjjxB.

CRYPTOLOGIA 9

Figures 1 and 2 show this process in detail. Before computing yB, Bob
verifies the correctness of the received commitment f(xA, pA, pB) by recomput-
ing it, using his knowledge of x̂A; pA; pB. Bob terminates the protocol if this
verification fails.

If Eve is not present, then yA ¼ yB. If Eve is present, the protocol with its
commitment forces Eve to choose her value xE to be sent to Bob before
learning what value xA Alice chose. As a result, at the end of Phase II, Alice
and Eve compute the string pair yA, and Eve and Bob compute the string pair
yB, with yA ≠ yB.

One could skip Phase II and simply take yA and yB to be pA||pB, as under-
stood by Alice and Bob, respectively. The benefit of Phase II is to establish
fresh values yA, yB for each session.

4.4. Phase III: Scenarios to detect if strings differ

In Phase III, Alice and Bob detect if Eve is present by determining if the strings
yA and yB they computed in Phase II differ. To do so, they carry out one of four
different “scenarios,” which exploit various aspects of the communications
channel (e.g., timing, jitter) or which exploit a common public string. The
appendix summarizes how each of the four scenarios work.

Each scenario works not by keeping the strings yA and yB secret from Eve
(Eve knows them), but by enabling Alice and Bob to detect when these strings
differ, even with Eve is in the middle.

We focus on Scenario 3, a text-messaging scenario involving timing, because
we consider it the simplest and most practical of the scenarios from the
patent application. Each scenario implements a “ping-pong” protocol
comprising a sequence of “rounds,” where each round consists of a sequence

Figure 1. Phase II of Chaum's protocol, without Eve present. Alice first commits to her random
string xA but waits to receive Bob's xB before Alice sends her xA to Bob.

10 A. T. SHERMAN ET AL.

of transmissions (we call them “pings” and“pongs”) alternately sent from one
party to the other.

Throughout the conversation, and especially at the beginning, each com-
municant monitors the conversation for any possible semantic irregularity
(typically this monitoring exploits informal shared secrets); if any irregularity
is detected, the communicant terminates the protocol suspecting a MitM.

5. Scenario 3: Text-messaging

In this scenario, Alice measures the elapsed time from sending a message to
Bob to receipt of his response. A cryptographic commitment combined with a
mandatory wait by Bob forces a MitM to double this time, even assuming a
powerful adversary with no network latency. We now explain how the
scenario works and why it works correctly. We also propose a simplification
based on constant wait times.

This scenario requires Alice and Bob beforehand to have chosen some
agreed-upon wait time, which we assume is also known by Eve. A simple
policy is to use a common default wait time that depends only on the network
technology. This time is agreed upon securely in advance and is not
negotiated in the presence of Eve.

5.1. How Scenario 3 works

At the end of Phase II, Alice computed a string yA, and Bob computed a string
yB. Alice and Bob wish to determine if yA ≠ yB, indicating presence of a MitM.

As illustrated in Figure 3, Alice begins the first round by selecting a round
key k at random. She salts this key with her yA to produce the salted key k0

Figure 2. Phase II of Chaum's protocol, with Eve present. Eve must commit to a string xE before
learning Alice's xA. As a result, Alice and Bob end up with different string pairs yA ≠ yB.

CRYPTOLOGIA 11

(e.g., k0 ¼ trunc128(h(k, yA))). The details of the salting technique are
unimportant, except that it should be free of extreme algebraic weakness.

Next, Alice sends Bob the commitment Ek0(m), where m is the next text
block of the conversation. Upon receipt, Bob waits a pre-agreed upon time
(e.g., a constant amount) and then sends Alice a key request.

Upon receipt of the key request, Alice first checks that the elapsed time is
neither too long nor too short. Less than the expected wait time is too short;
twice the expected wait time is too long. If the elapsed time is out of bounds,
then Alice suspects a MitM. If the elapsed time is within bounds, then Alice
sends the unsalted key k to Bob.

Using k and the salt yB, as known to Bob, Bob calculates k0 and deciphers
the message. Each communicant always checks the received message for
semantic irregularity, terminating the conversation if any is found.

Bob then constructs his response and sends it to Alice. There are multiple
variations of how the protocol continues. One choice is for Bob, in his next
message to Alice, to begin the next round of the scenario, playing the role
of Alice. Regardless, Alice or Bob selects a new round key for each round.

Another variation, which we implement in our prototype, is to “dovetail”
the current round with the next round. In this variation, Bob’s last message
of the current round begins the next round, with Bob then playing the role
of Alice from the previous round. Thus, the first “ping” of the next round
overlaps with the last “pong” of the current round.

Figure 3. Scenario 3, without Eve present. Alice commits to message m1 by encrypting it with k0,
a randomly chosen key k salted with her string pair yA. Bob waits and then sends a key request.
Alice sends the unsalted key, after which Bob sends his reply message m2.

12 A. T. SHERMAN ET AL.

In this dovetailing variation, upon receipt of Bob’s last message from the
current round, Alice will be unable to decipher it immediately. She must wait
to receive the round key chosen by Bob. Upon receipt of this key, Alice will be
able to decipher the message and check it for semantic consistency. With dove-
tailing, if Eve is present, Alice will notice a tripling of the expected wait time.

5.2. Why Scenario 3 works correctly

When Eve is present, it is convenient to refer to the round key selected by
Alice as k ¼ kA, to distinguish it from a round key kE chosen by Eve.

A MitM must, in some way, relay messages between the communicants.
Although Eve knows yA and yB, which will be different when she is present,
she does not initially know kA, and hence she does not initially know its salted
version k0A. Two of her choices are relay Ek0A(m) from Alice to Bob without
modification, or first determine kA and use it to decrypt Ek0A(m) and then relay
a re-encryption Ek0E(m), where k0E ¼ trunc128(h(kE, yB)) is the salted key using
salt yB of another key kE chosen by Eve. Both strategies fail.

If Eve relays Ek0A(m) without modification, Bob will detect the MitM
because Bob is expecting Alice to use salt yB, but Alice used yA. Importantly,
the security of E and h prevent Eve from finding another key that Bob could
use with salt yB to decipher the unmodified relayed message. Furthermore,
Eve cannot modify the plaintext without detection because doing so would
create a semantic irregularity.

If Eve first determines kA, she must wait the time expected by Alice. She can
try to cheat by waiting slightly less (hoping network latency will cause the key
request not to arrive too soon), but if she waits substantially less, Alice will
detect that Eve’s key-request arrived too soon (in less than the expected wait
time). Since Bob will eventually wait the expected amount of time, Eve will
have caused the elapsed time for Bob’s response to reach Alice to have at least
doubled. Alice will notice this increased latency (Figure 4).

5.3. Constant vs. variable wait time

For the agreed upon wait time, we recommend using a constant wait time.
This wait time should be carefully selected to be large in comparison with
typically experienced network latencies, also considering the time it takes
for the recipient to construct a response. A doubling of this time should be
clearly noticeable to the communicants. A wait time could be chosen based
on a typical maximum delay for the type of network being used.

Our suggestion is a simplification and security improvement over Chaum’s
proposal. Without giving details, Chaum originally proposed that variable wait
times be determined from the y values. For example, one might first choose a
small number (e.g., 2 or 4) of wait times. Then, one might use y as a seed into a

CRYPTOLOGIA 13

pseudorandom number generator to produce a sequence of values r1, r2, ….
For each round i, use ri to select a wait time for that round, selecting from
the small chosen set of possible wait times. Observed wait times significantly
different from those expected would be evidence of a MitM.

Originally, Chaum felt that variable wait times offered another check
on whether yA ¼ yB.8 However, such an additional check is unnecessary.
Furthermore, as realized by Chaum, with variable wait times, not all time
observations will yield useful evidence (i.e., if Alice is expecting a long wait
time, and Bob is waiting a short time, then Eve can delay her responses to
Alice without detection).

6. Experimental evaluation of Scenario 3

To evaluate how well Chaum’s protocol with Scenario 3 works, we implemen-
ted it and collected timing data, with and without a MitM. We now describe
our implementation and experimental methods and summarize the results of

Figure 4. Scenario 3, with Eve present. Alice encrypts message m1 using k0A, a randomly selected
key kA salted with her string pair yA. Because Bob is expecting Alice to use the different salt yB, Eve
must first obtain kA before relaying m1 to Bob. Doing so forces Eve to double the expected wait
time observed by Alice before Alice receives Bob's reply message m2. Alice will terminate the
protocol if the key request arrives too soon.

8Private communications with David Chaum.

14 A. T. SHERMAN ET AL.

our timing studies. Our results show that the protocol with Scenario 3 is
realizable and effective.

6.1. Purpose

The main purpose of our experimental work is to provide an initial evaluation
of the feasibility and effectiveness of Chaum’s protocol with Scenario 3. We
also wish to confirm that our foregoing discussion has addressed all crucial
issues and to uncover any possible neglected pragmatic concerns.

6.2. Implementation

In our demonstration version, two subjects can engage in a text-messaging
conversation by typing messages into windows on separate laptop machines
connected through a server on our university’s network. When Eve is present,
her code runs on Alice’s laptop.

When a communicant clicks the send button, a software client transfers a
text file from the sender’s machine to the recipient’s machine. For con-
venience, and invisible to the communicants, we implemented this file trans-
fer using Dropbox (Drago et al. 2012), with clients for Alice and Bob sharing a
Dropbox folder on their separate machines.

We choose to use Dropbox because it provides a simple means for imple-
menting text-messaging communications through a real network, and because
it exemplifies a large-latency communication system (i.e., Dropbox is slow).
For comparison, we also tested the system using a faster file-transfer technique:
Sharing a single machine, clients for Alice and Bob simply moved files within
the same file system. With Dropbox, typical times to transfer a file from one
machine to the other were approximately 60–180 seconds, compared with
approximately 200 milliseconds for our faster alternative.

We implemented Chaum’s protocol in JAVA using the javax.crypto API
(Oracle, “Java Cryptography”; Oracle, “Pakage Javax.crypto”). We used AES
encryption with 128-bit keys and message blocks, and SHA-3 hash which
produces a 160-bit output. We computed the one-way function as SHA-3.

We carried our timing studies using a HP-Pavilion dv6 laptop with an Intel
(R) Core (TM) i7 2.20 GHz processor using 4.00 GB RAM running under
64-bit Windows 7.

Our implementation permits human subjects to play the roles of Alice and
Bob. The goal of our implementation, however, is to demonstrate feasibility
and to collect timing data, not to provide polished and secure code.

6.3. Methods

We collected timing data on several executions of Scenario 3, with four “dove-
tailed” rounds per conversation (see Section 5.1), creating four observed wait

CRYPTOLOGIA 15

times per protocol instance. We did so separately with and without Eve
present. When Eve was present, we followed the typical pattern of behavior
for Eve described in Figure 4.

We collected timing data both with real subjects carrying on a conversation
with text-messaging and with a basic computer simulation of the packet
exchanges in such a conversation (without meaningful semantic content).
In this simulation, each text message comprised 50 characters.

For our “fast” network, we set the required wait time to be 5,000 millise-
conds. We do not report data from our “slow” network because our subjects
found it annoyingly slow.

6.4. Timing study results

Figures 5 and 6 show the observed wait times in executions of a four-round
protocol, with and without a MitM. Figure 5 shows wait times from 22
instances of a computer simulation of a conversation, using our “fast” network
(Eve was present in 11 instances). Figure 6 shows waits times from ten
instances with human communicants also using our “fast” network (Eve was
present in five instances).

6.5. Analysis

For the computer-simulated conversation (Figure 5), there is a clean separ-
ation between when Eve is present or not present. Due to the dovetailing,
the wait time triples when Eve is present. With human subjects (Figure 6),

Figure 5. Histogram of elapsed wait times for Scenario 3, with and without Eve, with simulated
communicants.

Figure 6. Histogram of elapsed wait times for Scenario 3, with and without Eve, with human
communicants.

16 A. T. SHERMAN ET AL.

these two cases are less cleanly separated, due to significant variation in the
time subjects took to construct responses. Fast response times prove that
Eve is not present, and slow response times are inconclusive.

These results suggest that the communicants should endeavour to respond
quickly during the initial part of each conversation, until they reach assurance
that Eve is not present.

7. Discussion

We now discuss several issues, observations, and open problems related
to Chaum’s protocol, including when the protocol is useful and the
decision-making process for deciding if a MitM is present.

7.1. Contexts when protocol is useful

The protocol is useful for conversations when the communicants have not
established authenticated public keys or other shared secrets, and there
is no mechanism for obtaining their authenticated public keys. Once the
communicants establish authenticated public keys or shared secrets, other
more traditional and robust protocols could be applied.

In the future, it may be easier for more people to exchange public keys
assuredly. For example, one could include a QR code of one’s public key
on a business card. Yet, today, many people still find it a challenge to
exchange authenticated public keys.

Using the protocol for first-time conversations might sometimes be attract-
ive because the communicants might not have yet established authenticated
keys. On the other hand, using the protocol for first-time conversations is
problematic because the communicants might not have established required
common knowledge or latency characteristics of the communications channel.

In principle, after one trusted communication, the parties could establish
authenticated public keys. Even so, there still can be value in the Chaum pro-
tocol, for example, for environments which lack the infrastructure to establish
and store authenticated public keys, or as a layer of protection against an
attack that tampered with the authenticated public keys.

7.2. Issues and observations

As does the Interlock (Rivest and Shamir 1984) protocol, Chaum’s protocol
leverages cryptographic commitment to detect a MitM in a variety of scenarios.
Chaum’s protocol improves on Interlock by resisting an adversary with zero
network latency. It improves on the Zfone (Wikipedia, “Zfone”) protocol by
resisting an adversary who can impersonate the voices of the communicants.
Although unusual delays can cause the protocol to suspect a MitM is present
when one is not, the protocol will always detect a MitM when present.

CRYPTOLOGIA 17

The main limitation of Chaum’s protocol is its assumption, also held by
Interlock, that the communicants can detect any semantic irregularity in
the conversation. This assumption places an undue burden on the communi-
cants and violates the security principle that network security protocols
should not depend on the judgements of the communicants. Another limi-
tation is that the mandatory wait periods necessarily increase communication
latency.

Furthermore, the communications must use a network for which they have
an accurate estimate of the maximum likely network latency. The larger this
maximum latency, the more the protocol will increase communication
latency. On the other hand, because the protocol must only be run during
the initial few rounds of the conversation, any increase in communication
latency would be limited.

Alice and Bob might begin each session with some personal talk about
some personal experiences that they shared in common that only they would
know. Only after they verify that there is no MitM, should they start the sensi-
tive part of the conversation. If a MitM was not present initially, she could
not insert herself later in the session; furthermore, future sessions with those
public keys would also be assured.

In Scenario 3, the dependence on timing limits the utility of the protocol to
synchronous conversations where both parties are texting on-line in a fashion
where the time for each response is fairly predictable. Scenario 3 does not
work for asynchronous text-messaging where one or both parties might wait
long and unpredictable amounts of time before responding.

The patent application does not clearly explain how the communicants
should agree on the expected wait times. Chaum assumes that the communi-
cants typically have a history of communicating with each other, or with other
people on similar networks, from which the wait time could be tuned and
the observed elapsed times could be interpreted. This assumption might not
always apply, and it raises the possibility that Eve might interfere with
communications that influence the agreed upon wait time.

Some of the scenarios assume a “common public string model” of security
in which the participants share a common string also known to the adversary.
For example, in Scenario 1, the communicants refer to a book or database of
jokes. In Scenario 3, the pre-agreed upon wait time(s) might also be viewed in
this context.

Scenario 1 also assumes that the communicants can embed information, at
least in small amounts, into a semantically-sensible conversation. (e.g., refer-
ring to a joke or punch line). This assumption is similar in spirit to the stron-
ger assumption in Zfone that each communicant can utter a short string in a
way that the adversary cannot impersonate. These are powerful assumptions:
If the communicants could so embed their public keys (or hash fingerprints of
these keys) into the conversation with integrity, then the communicants could

18 A. T. SHERMAN ET AL.

exchange authenticated public keys. Yet, some people may prefer to accept
these assumptions over those underlying SSL/TLS.

Because the protocol can falsely suspect a MitM when none is present, an
adversary might be able to cause various mischief, including denial of service,
by simply causing an increase in network latency, for example by sending large
video files. Before an actual attack, the adversary might provoke a series of false
alarms, hoping that subsequently during the real attack, the communicants will
have become insensitive to a true alarm. Similarly, in the “Bayesian” decision-
making interpretation (see Section 7.3), it might be confusing to the commu-
nicants what to do when the threat indicator light shines “amber” (caution).

Although the patent application does not do so, it must be specified what
should be done in each possible error state, including if a packet is lost in tran-
sit or if the session abends. In Scenario 3, any round with a lost packet should
be viewed as unsuccessful and suspicious and should not be interpreted as evi-
dence of the absence of a MitM. If the session abends, the participants should
restart the protocol from the beginning. Failure to handle all such error states
properly can create vulnerabilities.

Because of the security need to view lost packets with suspicion, the proto-
col as proposed has significant limitations for use in unreliable communica-
tions, including text-messaging with poor reception.

In practice, the communicants will likely share only a limited amount of
private information needed to establish semantic consistency (e.g., “What
happened at dinner last night?”). Consequently, an issue arises if this private
shared information is exhausted. An attacker might try to force the commu-
nicants to exhaust their shared information by causing them to restart the
protocol repeatedly, for example, under the guise of lost packets.

7.3. The decision-making process

Chaum conceived of Phase III not necessarily as a “categorical” process, where
after a short fixed number of communications each party would reach a certain
conclusion. Rather, he envisioned an interpretive “Bayesian” process: Each
communicant starts with an a priori belief in the presence of Eve, and updates
that belief during the conversation in light of evidence derived from the scen-
ario. Each communicant interprets the evidence in the context of his or her
expectations of certain properties of the communication channel and commu-
nicants, perhaps based in part on prior history of similar communications
between the parties. For decision making, each session is independent.

Concretely, there might be a colored light whose color signals the current
degree of belief in the presence of a MitM. This light might start out amber
(caution), and during the conversation the color might change to green (safe)
or red (suspected MitM).9

9Ibid.

CRYPTOLOGIA 19

In Scenario 3, a single round without undue delay is convincing evidence of
no MitM. A long wait time, however, could be caused by a MitM or by
unusual network latency. Upon observing a long wait for each of several
rounds, taking a categorical view, Alice would either restart the protocol
suspecting unusual network latency, or terminate the protocol suspecting a
MitM. Taking a more flexible view, Alice might continue cautiously updating
her belief in the possibility of a MitM.

While the Bayesian decision-making interpretation of the protocol offers
some attractive flexibility, and although it might reduce the number of false
alarms, we dislike its complexity and its need to be applied in more rounds.
We prefer the simpler categorical interpretation, which can be carried out in a
small number of rounds.

7.4. Open problems

Open problems include formally stating and proving the security properties of
the protocol in a precise mathematical fashion. One difficulty in doing so is
precisely characterizing the vaguely stated assumptions, for example, that
communicants can detect semantic irregularities, or that they can embed a
short string into semantic content.

Another approach is to analyze the protocol with formal tools for analyzing
cryptographic protocols, though most such tools are not well configured to
analyze forced timing properties.

We focused on the text-messaging scenario. It would be interesting to
explore the other scenarios, too.

It would also be interesting to perform a careful usability study of the
protocol. Such a study might compare Chaum’s protocol with SSL/TLS and
a baseline text-messaging communications session without any protections.

8. Conclusion

We explained Chaum’s protocol, which detects a MitM using minimal
assumptions and technology. We implemented Scenario 3 of the protocol
for text-messaging and through timing studies demonstrated that it works
effectively. When it is used, for simplicity, we recommend that it be implemen-
ted in its “categorical” style of decision making and to use constant wait times.

The protocol is especially useful when the communicants have no available
method for exchanging authenticated public keys. In comparison with the
Interlock and Zfone protocols, it protects against more powerful adversaries.
A nice feature is that it always detects Eve when she is present.

It is possible, however, for the protocol to detect Eve falsely, for example, if
there are unusual network delays. Also, through mandatory waiting periods,
the protocol necessarily increases communication latency. Although the

20 A. T. SHERMAN ET AL.

protocol aims to use minimal assumptions, it in fact requires several strong
assumptions: Each communicant must detect any fabricated conversation;
the network latency is always or mostly below a specified maximum; and
(for some scenarios) each communicant can embed information into the
semantic content of a conversation.

Chaum’s protocol illustrates a tension between two desirable principles for
building secure systems: minimal assumptions and ease-of-use. There is
considerable merit to the principle that fewer assumptions tend to result in
greater security. In particular, with fewer assumptions, there are fewer
assumptions that might be violated. Chaum’s contribution is a new protocol
for detecting MitM with minimal assumptions. Secure systems, however,
require some assumed security foundation, and a more substantial foundation
can result in protocols that are easier to use. Protocols that are easier to use
are more likely to be used and used correctly. Unfortunately, while simpler
in some respects than SSL/TLS, Chaum’s protocol, as does the Interlock
protocol, has an element that makes it harder to use: The communicants must
detect any semantic irregularity in the conversation.

It is a serious limitation of any protocol to require the communicants to make
any judgements. We feel the protocol is simple enough for many communicants
to carry it out, but we distrust many of them to detect semantic irregularity assur-
edly. We strongly prefer protocols that are fully automatic and that yield high-
assurance categorical results, even if they require stronger assumptions, provided
the assumptions are feasible. For this reason, we prefer detecting a MitM with the
robust, albeit somewhat complex, SSL/TLS protocols and to provide security
environments that include a trustworthy public-key infrastructure, or some other
suitable mechanism for assuredly exchanging authenticated public keys.

Improving on the Interlock protocol and exploiting the power of crypto-
graphic commitments, Chaum’s protocol leverages informal shared secrets
to enable the communicants to detect a MitM, after exchanging public keys
in an unauthenticated fashion. These informal shared secrets (i.e., common
knowledge among the communicants) permit the communicants to detect
semantic irregularities. Some people might prefer to accept the assumptions
underlying Chaum’s protocol rather than those underlying SSL/TLS. Our
prototype demonstrates that the protocol works effectively, even when the
adversary can send and receive messages with zero network latency.

We hope that our explication and informal analysis of Chaum’s protocol
will help others appreciate and learn from its novel and interesting facets.

Appendix: The scenarios and common friends

We briefly summarize how each of four scenarios works to enable Alice and
Bob to determine if their string pairs y and y0 are different, indicating a MitM.
We also briefly summarize how to leverage trust through common friends.

CRYPTOLOGIA 21

A.1. Four scenarios

A.1.1. Scenario 1 (live audio/visual, common reference)
As described in paragraphs 0048–0049 of the patent application (Chaum
2006), each communicant uses his or her y value as an index into a pre-agreed
upon public database (e.g., of jokes). Alice speaks the joke question, and Bob
speaks the punch line. Each of these utterances is embedded into a conver-
sation with semantic content. Each party verifies that the punch line matches
the question.

There are many ways in which this idea can be embodied. One way,
suggested by Chaum, is as follows.10 Alice picks a random key k and salts it
with y (e.g., ks ¼ trunc128(h(k, y)). Alice sends to Bob the joke question m
encrypted as Eks

(m). Bob then sends to Alice the punch line. After Alice
receives the punch line, she sends Bob the unsalted key k, from which he
can compute ks and decrypt the question. Each side verifies that the punch
line matches the question.

In another embodiment, each communicant interprets his or her y as the
sequence of binary choices in some pre-agreed upon two-party game. With
overwhelming probability, the outcome of the game will be the same if and
only if their strings match.

A.1.2. Scenario 2 (live audio/visual, directional flow)
As described in paragraphs 0050–0054 of the patent application (Chaum
2009), each communicant derives from his or her string y four numbers, y1,
y2, y3, y4, which they interpret as time intervals. The communicants then use
these time intervals to regulate the directional flow of their communications.

During time interval y1, only Bob speaks to Alice. During interval y2, the
communications are bidirectional. During interval y3, only Alice speaks to
Bob, and during interval y4, neither party speaks. Throughout intervals y1–
y3, each communicant engages in a semantically meaningful conversation.

If the y strings held by Alice and Bob differ, then a MitM will be unable to
prevent the communicants from noticing either a deviation from the expected
pattern of directional flow, unnatural delays in the conversation, or semantic
irregularities.

A.1.3. Scenario 3 (text-messaging, timing)
As described in paragraphs 0055–0059 and Figure 4 of the patent application
(Chaum 2006), Alice picks a key k at random and salts it with her y to produce
the salted key ks. She sends a message encrypted with ks. After waiting a speci-
fied (we recommend constant) time, Bob sends Alice a key request, in
response to which Alice sends the unsalted key k.
10Ibid.

22 A. T. SHERMAN ET AL.

As explained in Section 5, this scenario forces Eve to notably increase the time
Alice observes from sending a message to Bob and receiving his response. This
notable increase in time is not the result of any network latency caused by Eve.
Before relaying Alice’s message to Bob, Eve must first send a key request to Alice.
Bob will always wait to send his key request, and if Eve fails to wait long enough,
Alice will notice that she received a key request too soon.

This scenario proceeds in a sequence of rounds, where in each round Alice
and Bob reverse their roles as sender and recipient. In one interpretation,
these rounds overlap in the sense that the last “pong” of Bob to Alice of
the current round is also the first “ping” of Bob to Alice in the next round.

A.1.4. Scenario 4 (live audio/video chat, jitter)
As described in paragraphs 0060–0062 of the patent application (Chaum
2006), this scenario is a variation of Scenario 3 in which there is a constant
stream of packets. Unlike Scenario 3, in Scenario 4, the order of messages
is strictly sequential and without overlapping rounds. When a MitM is
present, the communicants will notice a jitter or delay in the communications.

Occasionally, Alice will “mark” a packet by encrypting it using a salted
key as described in Scenario 3. Alice will then include the unsalted key in
the payload of the next packet.

Thus, even if Eve has zero network latency, she is forced to delay the stream
of marked packets by one packet. The assumption is that this delay will be
sufficient to cause a detectable jitter.

As with Scenario 3, Scenario 4 proceeds in a sequence of rounds, where in
each round Alice and Bob reverse their roles as sender and recipient.

A.2. Common friends

We briefly summarize three methods, which we shall call Techniques i–iii,
that enable communicants to leverage their trusted credentials of others in
a bottom-up web of trust, exploiting common “friends” and common “friends
of friends.” For more details, see (Chaum 2006) and (Newton 2010).

A.2.1. Technique i (common friend)
If Alice and Bob each possess the trusted credentials (public key) of a known
common friend, they can leverage this credential to establish trust in each
other’s public keys. Bob sends Alice a list of credentials for possible common
friends. Alice returns a commitment of these credentials and marks them
using her private key. Bob then proves his identity to Alice by marking one
of Alice’s credentials and checking the committed credentials. Finally, Alice
repeats the entire process playing the role of Bob. Failure of any proof detects
Eve.

CRYPTOLOGIA 23

A.2.2. Technique ii (anonymous common friend)
This technique is Similar to Technique i, but Alice and Bob mask their
authenticators with random numbers to avoid revealing the identity of the
common friend, both to each other and to Eve.

A.2.3. Technique iii (common friend of friend)
This technique leverages the situation where Alice trusts the credentials of a
Friend-1; Bob trusts the credential of a Friend-2; and Friend-1 shares a com-
mon trusted friend with Friend 2. First, Friend-1 and Friend-2 prove to each
other that their credentials are fresh. Second, using Technique i, Friend-1 and
Alice re-establish trust. Similarly, Bob and Friend-2 re-establish trust. Third,
using Technique i, Alice and Bob establish trust.

About the authors

Alan T. Sherman is a professor of computer science at the University of
Maryland, Baltimore County (UMBC) in the CSEE Department and Director
of UMBC’s Center for Information Security and Assurance. His main research
interest is high-integrity voting systems. He has carried out research in
election systems, algorithm design, cryptanalysis, theoretical foundations for
cryptography, applications of cryptography, cloud forensics, and cybersecurity
education. Dr. Sherman is also a private consultant performing security
analyses. Sherman earned the PhD degree in computer science at MIT in
1987 studying under Ronald L. Rivest (see www.csee.umbc.edu/∼sherman).

John Seymour is a PhD student of computer science at the University of
Maryland, Baltimore County (UMBC) where he performs research at the
intersection of machine learning and information security under the super-
vision of Dr. Charles Nicholas. His tentative PhD dissertation topic is quan-
tifying value in open source malware datasets. In 2014, he completed his
master’s thesis, titled, “Quantum Classification of Malware,” which was later
presented at DEFCON 23. He currently performs machine learning research,
quantum computing research, and work on the DARPA STAC project at
CyberPoint International, LLC, located in Baltimore.

Akshayraj Kore works as an Android programmer for the startup Apio
Systems in Virginia. He is a member of the lead Android team which builds
situational awareness apps for driver safety and driver behavior improvement.
Raj is also an International Grandmaster, playing for UMBC’s chess team for
two years while pursuing his master’s in Computer Science at UMBC. His main
research interests are cryptography, programming languages, and algorithms.

William Newton is a software development project manager at Booz Allen
Hamilton. He received his bachelor’s in 2004 and master’s in 2010 from the
University of Maryland, Baltimore County (UMBC). His main research

24 A. T. SHERMAN ET AL.

http://www.csee.umbc.edu/∼sherman

interests are wireless security and related vulnerabilities, unique steganogra-
phy techniques, and detecting and analyzing man-in-the-middle attacks.

Acknowledgments

We thank David Chaum and Zooko Wilcox-O’Hearn for fruitful discussions. Thanks also to
Jonathan Katz, Neal McBurnett, and members of the UMBC Cyber Defense Lab (including
Edward Birrane, Josiah Dykstra, Russ Fink, Christopher Vatcher, Michael Oehler, and Ed
Zieglar) for useful feedback. William E. Byrd helped guide Kore’s software implementation.

Funding

Alan T. Sherman was supported in part by the National Science Foundation under SFS grant
1241576 and supplement, and by the Department of Defense under IASP grants H98230-10-1-
0359, H98230-11-1-0473, and H98230-12-1-0454.

References

Abdo, A. Y., Overton, A. J., Garms, J., and Parsons, J. E. Jr. Automatic re-authentication, U.S.
Patent Application Publication 2006/0117106 A1: (1 June 2006) 1–13.

Barak, B., Canetti, R., Lindell, Y., Pass, R., and Rabin, T. 2005. Secure computation without
authentication. Advances in Cryptology: Proceedings of Crypto 2005. (ed. Shoup, V.),
Vol. LNCS 3621. Springer-Verlag.

Blake-Wilson, S., and Menezes, A. 1999. Authenticated Diffie-Hellman key agreement
protocols. Selected Areas in Cryptography (SAC) ’98. In: Tavares, S., and Meijer, H.,
(ed.) Vol. LNCS 1556. Springer-Verlag.

Blake-Wilson, S., Johnson, D., and Menezes, A. 1997. Key agreement protocols and their
security analysis. Cryptography and Coding: 6th IMA International Conference Cirencester.
In: Darnell, M., (ed.) Vol. LNCS 1355, Springer-Verlag.

Chaum, D. 2006. Distributed communication security systems, U.S. Patent Application
Publication 2006/0218636 A1: (September 28), 1–19.

Cremers, C. J. F. Pascal Lafourcade, and Philippe Nadeau 2009. Comparing state spaces in
automatic security protocol analysis. Formal to Practical Security. In: Cortier, V., et al.,
(ed.), vol. LNCS 5458, Springer-Verlag.

Cyber Defense Lab Animation of Chaum’s protocol for detecting a man-in-the-middle http://
youtu.be/SKQQiPtmmJk (accessed 21 February 2015).

Dierks, T. and Rescorla, E. (August 2008). The Transport Layer Security (TLS) Protocol
Version 1.2, RFC 5246, Internet Engineering Task Force 1–104.

Doghmi, S. F., Guttman, J. D., and Thayer, F. J., March 2007. Searching for shapes in
cryptographic protocols. International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). In: Grumberg and Huth, (ed.) vol. LNCS
4424, Springer-Verlag, Extended version at http://eprint.iacr.org/2006/435.

Drago, I., Mellia, M., Munafò, M. M., Sperotto, A., Sadre, R., and Pras, A. 2012. Inside
Dropbox: Understanding personal cloud storage services, In: Proceedings of the 2012
ACM Conference on Internet Measurement (IMC ’12). Boston, MA ACM.

Dyn Research. 2013. The new threat: Targeted Internet traffic misdirection, http://research.
dyn.com/2013/11/mitm-internet-hijacking/ (accessed 25 January 2015).

CRYPTOLOGIA 25

http://youtu.be/SKQQiPtmmJk
http://youtu.be/SKQQiPtmmJk
http://eprint.iacr.org/2006/435
http://research.dyn.com/2013/11/mitm-internet-hijacking/
http://research.dyn.com/2013/11/mitm-internet-hijacking/

Johnston, A. M., Gemmell, P. S. 2002. Authenticated key exchange provably secure against
man-in-the-middle attack. Journal of Cryptology 15(2):139–148.

Langley, A. (April 6 2003). ImperialViolet: Pability Python, http://www.imperialviolet.org/
2003/04/06/capability-python.html (accessed 22 February 2015) (April 6, 2003).

Meadows, C. 2003. Formal methods for cryptographic protocol analysis: Emerging issues and
trends. IEEE Journal on Selected Areas in Communications 44–54.

Newton, W. (December 2010). Chaum’s protocol for detecting man-in-the middle:
Explanation and discussion, MS Thesis, CSEE Dept., University of Maryland, Baltimore
County, pp. 1–63.

Oracle, Java cryptography architecture standard algorithm name documentation for Java
platform standard edition 7. http://docs.oracle.com/javase/7/docs/technotes/guides/
security/StandardNames.html (accessed 1-27-15).

Oracle, Package javax.crypto, http://docs.oracle.com/javase/7/docs/api/javax/crypto/package-
summary.html (accessed 1 January 2015).

Rescorla, E. 2001. SSL and TLS: Designing and building secure systems. Boston, MA:
Addison-Wesley.

Rescorla, E. (June 1999). Diffie-Hellman Key Agreement Method, RFC 2631, Internet
Engineering Task Force pp. 1–13.

Rivest, R. L., Shamir, A. (April 1984). How to expose an eavesdropper, Communications of the
ACM 27(4):393–395.

Seymour, J. (January 30, 2013). Implementation and evaluation of various man-in-the-middle
detection protocols: Detecting an eavesdropper of instant messages using minimal
assumptions, Course paper, CMSC-644 Information Assurance, CSEE Dept., University
of Maryland, Baltimore County, pp. 1–9.

TheNextWeb.com, Lenovo caught installing adware on new computers, http://thenextweb.
com/insider/2015/02/19/lenovo-caught-installing-adware-new-computers/ (accessed 21
February 2015).

U.S. Patent Office. Prosecution history for U.S. Patent Application 11/388,520 by David
Chaum, pp. 1–48.

Vaudenay, S. 1995. Secure communications over insecure channels based on short authenti-
cated strings. Advances in Cryptology: CRYPTO 2005. In: Shoup, V., (ed.) vol. LNCS
3621, Springer-Verlag.

Wikipedia, Interlock Protocol, http://en.wikipedia.ord/wiki/Interlock_protocol (accessed 24
January 2015).

Wikipedia, Zfone, https://en.wikipedia.org/wiki/Zfone (accessed 12 April 2016).
Wilcox-O’Hearn, Z. (March 31, 2003). Defense against middleperson attacks. https://web.

archive.org/web/20030403000153/ http://zooko.com/defense_against_middleperson_
attacks.html (accessed 22 February 2015).

Zimmermann, P., Johnston, A., Ed., Avaya, Callas, J. (April 2011). ZRTP: Media path key
agreement for unicast secure RTP, RFC 6189, Internet Engineering Task Force, pp. 1–115.

26 A. T. SHERMAN ET AL.

http://www.imperialviolet.org/2003/04/06/capability-python.html
http://www.imperialviolet.org/2003/04/06/capability-python.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html
http://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html
http://thenextweb.com/insider/2015/02/19/lenovo-caught-installing-adware-new-computers/
http://thenextweb.com/insider/2015/02/19/lenovo-caught-installing-adware-new-computers/
http://en.wikipedia.ord/wiki/Interlock_protocol
https://en.wikipedia.org/wiki/Zfone
https://web.archive.org/web/20030403000153/
https://web.archive.org/web/20030403000153/
http://zooko.com/defense_against_middleperson_attacks.html
http://zooko.com/defense_against_middleperson_attacks.html

	1. Introduction
	2. Background and previous work
	2.1. Interlock protocol
	2.2. Zfone protocol
	2.3. Forced latency
	2.4. Prosecution history of Chaum’s patent application

	3. Assumptions and adversarial model
	4. The Chaum protocol
	4.1. Notation
	4.2. Phase I: Exchange public keys
	4.3. Phase II: Commit to string x
	4.4. Phase III: Scenarios to detect if strings differ

	5. Scenario 3: Text-messaging
	5.1. How Scenario 3 works
	5.2. Why Scenario 3 works correctly
	5.3. Constant vs. variable wait time

	6. Experimental evaluation of Scenario 3
	6.1. Purpose
	6.2. Implementation
	6.3. Methods
	6.4. Timing study results
	6.5. Analysis

	7. Discussion
	7.1. Contexts when protocol is useful
	7.2. Issues and observations
	7.3. The decision-making process
	7.4. Open problems

	8. Conclusion
	Appendix: The scenarios and common friends
	A.1. Four scenarios
	A.1.1. Scenario 1 (live audio/visual, common reference)
	A.1.2. Scenario 2 (live audio/visual, directional flow)
	A.1.3. Scenario 3 (text-messaging, timing)
	A.1.4. Scenario 4 (live audio/video chat, jitter)

	A.2. Common friends
	A.2.1. Technique i (common friend)
	A.2.2. Technique ii (anonymous common friend)
	A.2.3. Technique iii (common friend of friend)

	About the authors

	About the authors
	Acknowledgments
	Funding
	References

