page bidon...

MULTIPARTY UNCONDITIONALLY SECURE
PROTOCOLS

(Extended Abstract)

David Chaum"

Claude Crépeaut

Ivan Damgard*

*Centre for Mathematics and Computer Science (C.W.1.)
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

TLaboratory for Computer Science, M.I.T.
545 Technology Sguare, Cambridge, MA 02139, U.SA.

*Matematisk Institut, Aarhus Universitet,
Ny Munkegade, DK 8000 Aarhus C, Denmark

Abstract
Assume N paticipants Py,P,, .. ., P, share the
knowledge of a multivariable function F and that they
want to publicly compute z=F (X3,X5, . . . , Xn), where X;

is a secret input provided by P;. The difficulty is to
simultaneously provide the secrecy of each X and to
guarantee the correctness of the common result z. Such a
task has been accomplished in [GMW] under the
assumption that trapdoor permutations exist. The result we
propose in this extended abstract is that, under the
assumption that each pair of participants can communicate
secretly, any reasonable function can be computed if at least
23” of the participants are honest and this is proved without
any cryptographic assumption. Our result is based on a
non-cryptographic verifiable secret sharing protocol that we
also introduce in this paper.

1. Introduction.
The problem of multiparty function computation is

as follows: n participants P1,P, . .. ,Py sharing
the knowledge of a multivariable function F want
to publicly compute z=F (x1,X2, . . . ,Xa), where

is a secret input provided by P;. The goa is to
preserve the maximum privacy of the x’s and to
simultaneously guarantee the correctness of the
common result z. Intrinsically, the value of z will
reveal some information about the secret inputs. We

T supported in part by an NSERC Postgraduate Scholarship
supported in part by DARPA grant N0001483K 0125
research conducted at the C.W.I.

* research conducted at the CW.I.

say that an input value x; is cryptographically
secure in this context if it is believed hard to deter-
mine in polynomial time more information about x;
than what is necessarily given by z.

The problem of achieving secure multiparty
function computation in a public key cryptographic
setting, was first posed by Yao [Ya]. He also asked
for which functions this problem admitted a solu-
tion. The answer to these questions was found by
Goldreich, Micali and Wigderson in [GMW] who
showed that a solution, based on the existence of
trapdoor one-way permutations, exists no matter
what the function is. They exhibited a "compiler"
that transforms any multiparty function computation
problem into a multiparty cryptographically secure
protocol.

Inspired by their work, Chaum, Damgard and
Van de Graaf presented a more direct and practical
solution [CDG] based on a specific trapdoor func-
tion. Their protocol had the advantage that one x;
was unconditionally secure i.e. no information at all
is available about it, other than the amount released
by z. All these constructions rely on trapdoor
one-way functions, and therefore must assume
essentially that public key cryptography is possible.

A much weaker assumption is to assert the
existence of authenticated secrecy channels, i.e. a
way of communicating in which the identity of the
sender is known (authentication) and the data
transferred is revealed only to the single person it is
designed for (secrecy). Such channels are very
practical and can be implemented very easily: for
example, this channel can be obtained by writing
down messages on pieces of paper and physically
handing them out to the other parties. They can
aso be implemented using conventional

cryptography (secret key systems). Two fundamen-
tal questions remain: Which protocol problems can
be solved assuming only the existence of these
authenticated secrecy channels between pairs of
participants, and can al parties have their secrets
unconditionally secure?

1.1. Results.

In this paper, we show that essentialy any
multiparty protocol problem can be solved under
the assumption of the existence of authenticated
secrecy channels between pairs of participants and
that each party’s secrets can be unconditionally
secure. As explained below, under such a model it
is required that less than one third of the partici-
pants deviate from the protocol. The number of
cheaters tolerated by our solution is therefore
optimal.

The techniques presented do not rely on any
cryptographic assumptions; they provide secrecy
and correctness by means of a new non-
cryptographic verifiable secret sharing (VSS)
scheme. These schemes were introduced in the
cryptographic setting in [CGMA]. To this day, al
previous solutions relied on public key cryptogra-
phy. We introduce the first VSS scheme that does
not rely on such assumptions. Sections 3 & 4 are
devoted to the construction of this new scheme and
to its application toward achieving our goal.

1.2. Algorithm

The general structure of the algorithms is
similar to the ones of [GMW] & [CDG] in the
sense that it takes place in two steps. Commitment
and Computation. First the participants enter a
stage in which they commit to their inputs. This
commitment is performed using the VSS, so that
every participant gets a share of everybody else’'s
secret. If some participants are trying to commit to
something improper or are simply not collaborating,
this first phase will identify them and the remaining
participants will take the actions relevant to this
situation. This is the very best we can hope for.
What else could you do with someone who does
not want to participate? Once every one has com-
mitted to his input, the second phase is the actual
evaluation of the function. The computation is per-
formed locally by each participant on the shares he
got from the others.

Our construction achieves the following pro-
perties:

. Unconditional Secrecy: In both stages, it is
not possible for any subset of less than n/3
participants to gain any information about the
remaining people’s inputs.

. Built-In Fault Tolerance: In the second
phase, no such subset will be able to prevent
the honest participants from completing
correctly the secret evaluation of the function
(see Section 5).

Again, we mean that our solution does not
depend on some restrictions of the computing
power of the participants. Earlier solutions relied on
cryptographic assumptions both for secrecy of the
inputs and correctness of the computation. If in the
best case these assumptions turned out to be true,
the secrecy and correctness would still be depen-
dent of the limitations in computing power of the
participants.

1.3. Related Works

Our work has drawn inspiration from and
relies on a number of earlier contributions. The
Byzantine Generals problem proposed and solved
by [LPS] can be thought of as underlying our work.
Also, the type of so called secret sharing schemes
proposed by [BI] and [Sh] are basic building
blocks. The usefulness of their homomorphic
structure was observed by [Be], who proposed tech-
niques very similar to ours.

Other work has been able to provide uncondi-
tional privacy in multiparty protocols. A poker
protocol [BF] used a model similar to ours, but was
unable to tolerate active cheaters. The dining cryp-
tographers problem [Ch2], also based on a similar
model, provided unconditional untraceability of
messages and was able to tolerate active disruption.
The present work stems from that of [CDG], where
general multiparty protocols were provided based
on trapdoor one-way functions that can offer
unconditional privacy to one participant. It was
also shown there that unconditiona protection of a
single designated participant is al that can be
achieved under that model.

Some concurrent and independent work
[BGW] has also been performed on this topic: dur-
ing discussions with Shafi Goldwasser and Avi
Wigderson, we learned that, together with Michael
Ben-Or, they were working on results similar to
ours. At that time, al of us had results in a very
early stage. Finaly, by the time of submission to
this conference, both groups have ended up getting

almost identical results by quite different means.

2. The Modd

For convenience, the number of participants
will be called n, which can aways be written as
n=3d+a, where a= 1, 2 or 3 Le
P1,P2, - - - ,Pn be the participants.

Our assumptions about at least 2d+a of the partici-
pants are that:

. they do not leak secret information to other
participants; and

. they send the correct messages defined by the
protocol.

We call a participant satisfying the above properties
reliable. At the start of the protocal, it is of course
not generally agreed which participants are reliable.
Our basic assumptions about the communication
between reliable participants Pa and Pg are that:

. when Pa sends a message to Pg, nobody else
can learn anything about its content;

. when Pg receives a message from Pa, Ps
can be certain that nobody but Po could have
sent the message; and

. messages sent will be received in a timely
manner.

Finally, we complete our model by assuming the
following:

. all participants agree on the protocols to be
followed; and

. participants can determine whether messages
sent to them were sent before deadlines set in
the protocaol.

Our protocols ensure that al reliable partici-
pants obtain the correct result. It is proved con-
structively in [LPS], under a model like ours, that a
necessary and sufficient condition for all reliable
participants to agree on a message—such as the
result of a protocol—is that at least 2d+a of the
participants are reliable. Hence, our two-thirds
assumption is optimal. A polynomial agorithm
solving this problem is presented in [DS]. Their
construction allows us to obtain an efficient
“*broadcast’’ channel: a means alowing any partici-
pant to make a message known to al participants,
in such a way that al reliable participants will
obtain the same value of the message. (Assuming a
broadcast channel, moreover, would not enable us
to to weaken our other requirements, but remains

interresting in some other context, as explained in
Section 6.)

For simplicity in the following descriptions,
we use the terminology of information theory
because we make the assumption that the channels
are unconditionally secure. Notice however that in
fact we get protocols as strong as the secrecy and
authentication of the channels used. If the channels
were not unconditionally secure, for example, the
protocol would not be unconditionally secure for all
participants but its correctness would ill be
guaranteed.

3. Implementing Blobs using Secret Sharing

In [BCC], a fundamental protocol primitive is
described: the blob. The purpose of blobs is to
allow a participant Pa to commit to a bit in such a
way that she cannot later change her mind about
the bit, but nobody else can discover it without her
help. The defining properties of blobs are as fol-
lows:

(i) Pa can obtain blobs representing 1 and blobs
representing 0.

(i) When presented with a blob, nobody can tell
which bit it represents.

(iii) Pa can open blobs by showing the other par-
ticipants the single bit each represents; there
is no blob she is able to ‘‘open’’ both as 0
and as 1.

(iv) Any other participant can at will obtain blobs
representing O and 1. Moreover, these blobs
must look exactly like the blobs obtained by
Pa.

To implement blobs in our model, we use a
variation on Shamir's secret sharing scheme [Sh].
This variation was proposed by Blakley [BI], who
independently discovered secret sharing schemes,
and it is more efficient than Shamir’s original con-
struction.

For our purposes, the scheme may be
described as follows: a polynomial f of degree at
most d over GF (2¥) is chosen uniformly, where k
is an integer such that 2k>n. The secret to be
shared is defined for convenience as the value of f
at 0. The protocol aso assigns a distinct non-zero
point ig in the field to each participant Pg. The
secret can now be divided among the n participants
by providing each Pg with the value of f (ig). Itis
not hard to see that more than d shares completely

determine f, and therefore the secret, while no
Shannon information about the secret is reveaed by
any number of shares not exceeding d.

We generalize dlightly by alowing blobs to
represent any value in GF(2k). Blobs are now
readily achieved:

(i) To obtain a blob representing the value v,
participant Pa chooses uniformly a polyno-
mial f with deg(f) < d, such that f (0) = v.
She then calculates n shares as above and
distributes one to each participant. Using the
subprotocol described below, she convinces
the other participants that she has distributed
a consistent set of shares.

(i) Since the number of unreliable participants is
smaller than d, no collusion will gain any
information in the Shannon sense about the
value represented by a blob.

(iii) To open a blob, Pa first broadcasts what its
shares should be ({ig[M<B<n}). Then each
participant broadcasts a message stating
whether they agree with their share that was
broadcast by Pa. If a participant does not
agree, he is said to be complaining about Pa .
It is required that at least 2d+a of the parti-
cipants do not complain. By the remarks
below, this condition ensures that Pa can
only open a blaob to reveal the single value it
represents.

(iv) Any participant can choose a polynomia and
distribute shares of it, whence it is impossible
to tell from a blob who generated it.

By distributing inconsistent shares to reliable
participants, a coalition of unreliable participants
could alow Pa to open a blob in two or more dif-
ferent ways. The following proof, which we infor-
mally cal a ‘‘cut-and-choose procedure’’ (and is
similar to the construction of [Be]) enables us to
remove this inconsistency. Let the origina blob
chosen by Pa be B. Then the cut-and-choose
works as follows:

(8 Pa establishes a new independently chosen
blob 8.

(b) One of the other participants flips a coin and
asks Pa to
- open 9, or to
- open &+B3, where o+ denotes the blob
defined by the sum of corresponding shares
of & and f.

(c) Steps (a) and (b) are repeated until no com-
plaints have occurred in m consecutive
rounds, or until more than d participants
have complained about Pa. In the first case
the proof is accepted, otherwise it is rejected.

The participants take turns in executing step
(b). By assumption, this means that Pa will be

unable to predict the coinflips at least @nﬁ of the
time.

Note that the proof will aways terminate:
even if al unreliable participants work against an
honest Pa, they cannot enlarge the number of
rounds by more than md.

When 3 is later opened, the shares held by
complaining participants are of course ignored.

If the proof is accepted, then the following
holds with probability exponentialy close to 1 in
m: all reliable participants who did not complain
(of which there are at least d+a) have shares con-
sistent with one polynomial of degree at most d.

Thus, with very high probability, Pa cannot
convincingly claim that her blob contains anything
but the secret determined by the d+a valid shares
guarantied by the fact above, since otherwise the
condition in step (iii) would be violated.

To see why this is satisfied, it suffices to con-
sider the behavior of reliable participants,
corresponding to the worst case assumption that all
unreliable participants will try to help Pa by
always agreeing with her. For any blob vy, consider
a polynomial consistent with a maximal number of
shares of vy, and let C(y) be the number of remain-
ing shares held by reliable and non complaining
participants. Thus C(y) may vary over time. In
other words, no matter how Pa tries to open vy, at
least C(y) participants will complain. The case
where P created y correctly corresponds of course
toC(y) = 0.

In any of the rounds of the subprotocol
above, it is easy to see that because the sum of o
and &+f is just B, C(d)+C(d+B) = C(B) must hold.
So if at any point C(B) >0, then Pa cannot go
through m rounds without complaints unless she

can predict roughly 23”1 coinflips.

In [BCC], it is shown how one can construct,
using only blaobs, efficient minimum disclosure
proofs for membership in a very large class of
languages, including NP and BPP. Since we can
construct blobs in our model, we can also perform

all such proofs directly.

4, VSS and Fault Tolerant Blobs.

When opening a blob, Pa was to broadcast
the shares she distributed in creating it. If Pa istry-
ing to prove some statement using the techniques of
[BCC], the previous section’s results imply that it
isin Pa’s interest to create and broadcast the shares
properly. But in other cases, communication
failures or a change of heart, for example, might
keep Pa from ultimately broadcasting the shares.
Even if the other participants were to make Pa’s
shares public in efforts to open the blob without
Pa’s help, they would be left with a computational
problem: unreliable participants might make public
false values for their shares, and finding the value
represented may require searching the exponentially
many subsets of shares of size 2d+a for one con-
sistent with one polynomial of degree smaller than
d. Even worse, if Pa was aready cheating when
she created the blob, the majority of complainers
could be reliable. In such cases, unreliable partici-
pants could choose at the time of opening between
broadcasts that would leave no unique solution for
the secret or other broadcast that would yield a par-
ticular value unambiguously.

This is where the secret sharing scheme
becomes insufficient and a VSS is needed. To
avoid the problems mentioned above, and assist
with things to be presented later, we provide for the
“*sharing of the shares of a blob’’ (as was done for
similar reasons in [Ch]). Thus, to create a double
blob 8, Pa proceeds as follows:

(1) She creates an ordinary blob in the same way
as in the previous section. This blob is
caled the top level blob, and contains the
secret she commits to.

(2) For each participant Pg. the following is
done: suppose Pa sent the share sz of her
origina blob to Pg. Then Pg creates a sub-
blaob, i.e. he creates a blob Bg containing his
share sg.

(3) By the remarks in the previous section, all
participants are now committed to their share
of the top-level blob. A cut-and-choose pro-
cedure is now used to check that everybody
has committed to the proper share: Pa
creates a number of additional double blobs
01,02, - - - ,06r (for which each participant
creates his own sub-blobs), and according to

coin flips made by other participants, either
all shares of the new double blob are made
public or the sum of corresponding shares of
the new and the original double blob are
broadcast. Thus in each round, every partici-
pant opens a sub-blob of his own (either a
new one or a sum) to confirm his agreement
or disagreement with P on what she sent
him originally. In order for the proof to be
accepted, a subset consisting of at least 2d+a
participants must agree with Pa in all rounds.
If a participant disagrees with P, a any
point, then his share and sub-blob will be
ignored when the original double blob is later
opened.

It is easily seen that if the proof in (3) above
is accepted, then the following holds with probabil-
ity exponentialy close to 1 in the number of coin
flips:

- all sub-blobs accepted by the cut-and-choose
contain a uniquely defined share of the top-
level blob; and

- all these shares are consistent with one poly-
nomial.

To open a double blob, all participants broad-
cast their shares of the top level blob as well as all
shares of their sub-blobs. The result of the opening
is uniquely and easily determined, since in this case
the effect of the sub-blobs is to prevent unreliable
participants from issuing improper shares of the top
level blob: if a participant cannot confirm his share
by opening his sub-blob correctly, it will just be
ignored.

5. Multiparty Computations.

This section considers general multiparty
computations. These may involve secret input from
each participant, and a single output which should
become known to al reliable participants.

In the first step of the protocol, al partici-
pants commit to their secret input bits by distribut-
ing shares of them to all participants. The basic
idea is now to do the computation by having each
participant perform a corresponding computation on
the shares he received. There are two problems
with this idea: first, we cannot trust all participants
to do the correct computation. Therefore partici-
pants must be committed to their shares, so that
they can prove that the protocol was followed.
This suggests a structure similar to that of a double

blob. Secondly, for technical reasons explained
later, al reliable participants must be able to com-
plete the computation on their shares. Thus we
cannot tolerate any complaints about the shares dis-
tributed, since there may be no way to tell whether
a complainer is reliable or not. This leads to the
following definition of arobust double blob:

- like a double blob, a robust double blob has a
top-level blob and sub-blobs, where the top-
level contains the bit committed to.

- all sub-blobs contain valid shares of the top-
level blob.

The double blob as described in the previous
section clearly does not always satisfy these proper-
ties. We can, however, get robustness by using the
fact that a double blob, once verified by cut-and-
choose, can aways be opened without the help of
its creator, and even in spite of unreliable partici-
pants. First, notice that the content of a top-level
blob is completely determined by the shares of the
sub-blobs (called sub-shares), if these are con-
sistent. Thus, to create a robust double blob p, Pa
creates a set S={01,02, - - - ,0n} of double blobs,
each one is supposed to contain a share of p (note
that the sub-blobs in dg are created by Pg after
receiving shares from Pa) Once each &g is verified
as in the previous section, it is opened to Psg.

Remember that this operation can be achieved
without the help of Pa. At this point Pg commits
to the share hidden in the double blob & using a
single blob Bg. A gigantic cut-and-choose is then
used over this structure to prove its correctness.
Two things have to be proven about this structure:

- All double blobs in S contain shares of p
consistent with one polynomial.

- Each Pg has committed to the same share as
is contained in the double blob P made for
him (Contents(Bs) = Contents(dg)).

We leave it as an exercise to design a cut-
and-choose procedure that will establish this fact.

Note that this protocol leaves no possibility
for Pa to cheat and blame the resulting disagree-
ment on some other participant: if less than d par-
ticipants complain about Pa, then a valid commit-
ment has (with very high probability) been con-
structed, and otherwise it is obvious that Pa is
unreliable.

When this first phase including creation of
commitments for all input bits and proofs of vali-
dity is completed successfully, the protocol is
fault-tolerant: there is no way the unreliable parti-
cipants can stop any reliable participant from com-
puting the correct result.

The computation is specified by a boolean
circuit composed of XOR and AND gates. It is
then clearly sufficient to be able to safely compute
from two robust double blobs a new one both as
the XOR of the two inputs and also as the AND.

Computing the XOR of two double blobs is
easy, based on the remarks in previous sections. all
participants simply add their shares, both for the
top-level blobs representing the actual bits, and for
the sub-blobs. The outcome is just a new double
blob representing the XOR of the inputs.

Basically, computing the AND is just as sim-
ple: the participants merely multiply the shares.
But this raises some technical problems, since the
computation involves polynomials of degree larger
than d; polynomials of this large degree will not be
robust enough against unreliable participants.

Consequently, the AND is instead done in
two steps:

(1) Each participant multiplies his shares of the
two top-level blobs and commits to the pro-
duct using a sub-blob. He then proves by a
cut-and-choose (to be described below) that
the multiplication was done correctly.

The result of (1) is a double blob containing the
AND of the two bits, but with a large degree poly-
nomia in the top-level blob. We cannot continue
the computation with this blob, since for one thing
the degree would eventually grow too large for the
secrets to be uniquely determined. Therefore, this
degree is brought down below d as follows:

(2) Each participant chooses a pair of robust dou-
ble blobs constructed as in the beginning of
this section, and such that the top level
involves a pair of randomly chosen polyno-
mias (f.9), where deg(f) < 2d,
deg(g) <d, and f(0)=g (O)O{0,1}. We
leave as an (easy) exercise construction of a
cut-and-choose for proving correctness of
such a pair. When all these pairs are added,
the result will be a pair still satisfying the
conditions above, but such that nobody
knows the common value of f and g in O.
Finaly, the double blob constructed with f is
x-ored with the one computed in (1), and the
result is opened. If this result is O, then the
computation continues with the blob from g,
otherwise 1+g (the complemented bit) is
used.

We have now only to describe the cut-and-
choose mentioned in (1). In principle, this

procedure is essentidly the same as the computa-
tion protocols of [BC]: the prover has committed
to s1,52 and sz, and claims that 152 = s3. He then
commits to a row-permuted version of the multipli-
cation table for the field used. The other partici-
pants, responsive to their coin flips, now ask him
either to open the entire table or to prove that one
of the rows contains commitments to the tuple (si,
Sy, S3). This is repeated to attain the desired level
of certainty. Note that since the size of the field
need only just exceed n, only a number of mes
sages quadratic in n are sent.

We call attention to the possibility of a trade
off between vulnerability to disruption and
efficiency of the protocol. The initial commitment
phase could in fact be completed correctly using
only ordinary double blobs, if we require that
nobody complains about anybody during the initial
phase. This requirement is easily seen to imply
that al the double blobs constructed are (with very
high probability) robust. With this method, how-
ever, it is not possible to find out who has not been
following the protocol in the first phase, if com-
plaints do occur.

6. Generalizations.

The one third assumption on the number of
unreliable participants is necessary to ensure that
Byzantine agreement is possible. It is natural, how-
ever, to ask what can be done if we ensure this
simply by assuming the existence of a broadcast
channel as part of the model?

In fact, even with this assumption, it is
impossible to implement unconditionally secure
blobs while tolerating more than d unreliable parti-
cipants. Informaly, this is so, since if Pa tries to
commit to some secret, she must send a set of mes-
sages containing enough Shannon information to
determine her secret completely. She cannot use
the broadcast channel for this, since her secret
would then become public immediately. Moreover,
if there are U unreliable participants, then no sub-
set of this size or smaller must be given enough
information to determine the secret, since the set of
unreliable participants is unknown. When later the
participants try to determine which secret Pa is in
fact committed to, the unreliable participants are
free to fabricate some set of messages which they
will claim P sent them originally. Since any sub-
set of U messages leaves the secret completely
undetermined, it is easy to construct the set of false

messages such that it is consistent with the mes-
sages sent to U reliable participants. We thus have
a situation, where 2U participants seem to agree on
something, while the rest, say R, participants are
complaining. But if we alow U >n/3, then
R < U, and thus there is no way of finding out
whether the situation is in fact as described above,
or the R participants are just unreliable ones, com-
plaining for no good reason! Moreover, this ambi-
guous situation could result, even if Pa has fol-
lowed the protocol. However, an extension is pos-
sible [Cr] using this broadcast channel: more
unreliable participants can be tolerated if we are
willing to revert to a cryptographic assumption in
the case where /3<U <n2. An "Obliviously
Cryptographic' multiparty computation protocol
may therefore be achieved given this extra feature.

It is also possible to tolerate more unreliable
participants, if we change the model by restricting
their behavior. If we assume that no participant will
ever send an incorrect message during the protocol,
then two forms of behavior remain, that may cause
problems in the protocol:

1) Sharing secret information with other partici-
pants; and

2) Stopping the protocoal too early.

In the following, assume that at least C parti-
cipants will complete the protocol, while at most L
participants will leak secrets to others.

Clearly, information about the inputs to a
computation must be distributed in such a way that
any subset of C participants or more can recover
all inputs, since otherwise there is no guaranty that
the computation can be completed. But if the
inputs are to remain unconditionally protected, this
means that we must have L <C.

One can now make the simplifying assump-
tion that the set of participants is partitioned in one
subset in which participants may show both forms
of unreliable behavior mentioned above, and
another subset, where there is no deviation from the
protocol at all. This means that C+L =n, and
therefore that L = [(n—1y2 0< C. Hence the best
a protocol can hope to do in this case is to tolerate
the situation where L = [(n-1y20and C =n-L.
But this can easily be accomplished using our basic
protocol with polynomials of degree L. Because of
the inequality on L, multiplication of polynomials
will not lead to loss of information. As usual, pro-
tection against early stopping is effective after the
initial commitment phase, where double blobs are

used. If a participant stops, the remaining ones can
use the corresponding subshares as input to a
separate instance of the basic protocol which will
simulate the missing participant.

Without the assumption that C+L = n, things
seem to become more complicated. It is clear that
as long as L < [{n-1y2 0 then the solution out-
lined above still works, but without this condition,
it is not clear what happens. The method with mul-
tiplication of polynomials does not work any more,
because it leads to polynomials of a degree larger
than the number of available shares. Therefore the
construction of a genera computation protocol
under these special assumptions remains an open
problem.

7. Acknowledgements. We would like to thank
Gilles Brassard, Ernie Brickell, Shafi Goldwasser,
Jeroen van de Graaf, Silvio Micali, Micheal Sacks
and Avi Wigderson for the discussions about this
paper and their interrest in our result.

References.

[BF] Baany and Furedi: Mental Poker with
Three or More Players, Information and
Control, vol. 59, 1983, pp.84-93.

[Be] Benaloh: Secret sharing homomorphisms,
Proc. of Crypto 86.

[BI] Blakely: Security proofs for information
protection systems. Proceedings of the
1980 Symposium on Security and Privacy,
IEEE Computer Society Press, NY, 1981,
pp.79-88.

[BC] Brassard and Crépeau: Zero-Knowledge
Simulation of Boolean Circuits. Proceed-
ings of Crypto 86.

[BCC] Brassard, Chaum and Crépeau: Minimum
Disclosure Proofs of knowledge. To

appear.

[BGW] Ben-Or, Goldwasser and Wigderson:
Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed
Computation. to appear in Proceedings of
STOC 88.

[Ch] Chaum: How to keep a secret dive.
Proceedings of Crypto 84.

[Ch2] Chaum: The Dining Cryptographers Prob-
lem, to appear.

[Cr]
[CDG]

Crépeau: Ph.D. Thesis, in preparation.

Chaum, Damgard and van de Graaf: Mul-
tiparty Computations ensuring secrecy of
each party’s input and correctness of the
result. To appear in Proceedings of Crypto
87.

[CGMA]

[DS]

Chor, Goldwasser, Micali and Awerbuch:
Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of faults.
Proceedings of FOCS 85, pp.383-395.

Dole and Strong: Polynomia Algorithms
for Multiple Processor Agreement.
Proceedings of STOC 82, pp.401-407.

[GMW] Goldreich, Micali and Wigderson: How to

[LPS]

[Sh]

[Yal

play any mental game. Proceedings of
STOC 87, pp.218-229.

Lamport, Shostak and Pease: The Byzan-
tine Generals Problem. ACM trans. Prog.
Languages and Systems, vol.4, no.3, 1982,
pp.382-401.

Shamir: How to share a secret. CACM,
vol.22, no.11, 1979, pp.612-613.

Yao: Protocols for secure computations,
Proc. of FOCS 82, pp.160-164.

