
Computer Systems Established, Maintained and Trusted
by Mutually Suspicious Groups

By

David Lee ~ha~
A.B. (University of California, San Diego) 1977

M.S. (University of California) 1979

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

c t2 2 S co f (f ((J nee ~ ... c .· ,

Computer Systems

l

;._ J(f ;.5
f I

Established, Maintained, and Trusted

by Mutually Suspicious Groups

© 1982 by David L&hq.u;J

Abstract

A number of organizations who do not trust one another can build and

maintain a highly-secured computer system that they can all trust (if they can

agree on a workable design). A variety of examples from both the public and

private sector illustrate the need for these systems. Cryptographic techniques

make such systems practical, by allowing stored and communicated data to be

protected while only a small mechanism, called a vault, need be physically

secured. Once a vault has been inspected and sealed, any attempt to open it will

cause it to destroy its own information content, rendering the attack useless. A

decision by a group of trustees can allow such a vault-or even a physically des

troyed vault -to be re-established safely.

Networks of vaults can allow reliable operation even in the face of communi

cation channel and vault failures . Networks also have several security advan

tages over single vault systems: (1) information that is no longer needed can be

permanently destroyed, (2) comprehensive records of security relevant actions

by the trustees can be maintained, and (3) abuse of the trustees' power requires

advance notice. Algorithms which implement such a network are presented in a

specially adapted formal specification language; examples of the algorithms' use

are given; analysis of communication, memory and time requirements are

presented; and security and reliability properties are proved.

Each of some mutually suspicious groups can supply part of a vault, in such

a way that each group need only trust its part in order to be able to trust the

entire vault. Another approach to construction is based on public selection of a

system's component parts at random from a large store of equivalent parts. The

practicality and ramifications of the ideas presented are also considered.

iii

Table of Contents

I Introduction ... 1

§ 1 Problem Statement & Motivation 1

§2 Overview & Chapter Summaries .. 3

§3 What's So New About All This? ... 4

II Survey of the Literature ... 6

§1 Cryptographic Algorithms .. 6

§2 Applications of Cryptography ... 10

~
§3 Partial Key Techniques ... 14

§4 Computer Security .. 15

§5 Physical Security .. 19

§6 Survivability 20

§7 Related Work .. 22

III Assumptions 26

§ 1 Cryptologic ... 26

§2 Partial Key Techniques ... 28

§3 Verification & Certification ... 29

§4 Physical Security & Survivability 29

§5 Organizational Structure 30

IV Single Vault Systems .. 32

§1 Checkpoints & Restarts .. 32

§2 Limitations of Single Vault ~ystems 34

V Multiple Vault Systems ... 37

§1 Introduction to Algorithms ... 37

§2 Simple Types, Primitives & Constants 40

§3 Secret 11-functions .. 46

§4 Non-Secret 11-func lions ... 50

§5 Templates, Template Types, & Primitives 57

§6 Synchronized G-functions ... 61

§7 Un-Synchronized O.functions ... 82

VI Operational Example .. 90

§1 Adding in Three Nodes .. 91

§2 Changing Keys & Setting Minima 97

VII Proofs 100

§1 Security .. 100

§2 Reliability 105

VIII Performance Analysis ... 111

§ 1 Resource Requirements Summary 111

§2 Space Requirements .. . 112

§3 Communication Requirements 115

§4 Time Requirements 118

IX Initial Certification ... 120

§1 Multiple Observer Construction .. 121

§2 Multiple Constructor Construction 121

X Future Work, Summary & Implications .. 124

References ... 126
1aum:Sat May 22 13:24:52 1982
·aw1 ng

Chapter I

Introduction

§1 Problem Statement & Motivation

This section defines the increasingly important problem of providing

computer systems that can be trusted by groups who don't neces

sarily trust one another. Example applications motivate the need for

solutions and illustrate the nature of the solutions proposed

Concern over the trustworthiness of computer systems is growing as the

use of computers becomes more pervasive. It is not enough that the organiza

tion maintaining a computer system trusts it; many individuals and organiza

tions may need to trust a particular computer system.

For example, consider a computer that maintains the checking account bal

ances of a bank. The bank is concerned, among other things, about possible loss

of balance records. The Federal Reserve Bank must know the total of these bal

ances, to ensure that the legally required percentage of the balances is on depo

sit with it. The Internal Revenue Service requires the ability to check the bal

ance of an individual's account. Individuals, or a consumer organization acting

on their behalf, may wish to ensure that disclosures are made known to those

1

involved, and that inquiries can never be made on information that is more than

a few years old.

There are many other similar applications of computers which involve

private sector records related to consumers, such as those arising from credit,

insurance, health care, and employment relationships. Public sector record

keeping, in such areas as tax, social security, education, and military service

are also quite similar.

Another class of applications involves information about public or private

sector organizations as opposed to information about individuals. For example,

various international agencies, such as the International Atomic Energy Agency,

must be able to ensure the secrecy of the in~ormation they receive from their

member nations. Numerous industry organizations develop statistics from

confidential information submitted to them by their member corporations.

Brokers and other middlemen in the mailing list industry must be able to a

ensure the confidentiality of the lists they receive from a variety of list compil

ing organizations for purposes of removal of duplications or various kinds of

prescreening.

All of these applications involve one group who owns or controls the com

puter system, and who is particularly concerned with reliably maintaining the

operation of the system and with ensuring the survival of the data maintained by

the system-they will be called the "trustees." A second group or set of groups

are primarily concerned about the confidentiality of the data which relates to

them that is available to the system. There may be a third group or set of

groups, which may overlap with the first and second groups, who are concerned

about the correctness of the operation of the system.

Of course, many applications of computer systems used solely within large

organizations have a similar flavor, because such organizations are often com

posed of groups or individuals with conflicting interests.

§2 Overview & Chapter Summaries

The basic idea of the proposed systems is introduced and the organi

zation of the thesis is presented as a guide to the reader.

This thesis otiers a system design and feasibility argument for computer

systems which can be established, maintained and trusted by mutually suspi

cious groups. Such systems can be used to meet the requirements of applica

tions like those mentioned in the previous section, if a workable design can be

agreed on by the participants. The cryptographic techniques which form the

basis of the approach are introduced in the next chapter, Chapter II. They make

such systems practical by reducing the mechanism upon which reliability and

security depend. This mechanism-the processor and its high-speed store-will

be called a vault. Vaults will be constructed in a way that can be verified by all

the participants, or by any interested party, and then they will be physically

secured, such as by being shielded within a small safe-like container.

In addition to introducing the cryptographic techniques, and presenting the

relationship of the present work to the literature, Chapter II also surveys the

varied literature which lends support to the practicality of the ideas presented:

applications of cryptography; design and verification of security properties;

securing apparatus from tampering and probing; and survivability of equipment,

data and cc,>mmunication. Chapter III abstracts from the techniques of Chapter

II the assumptions which form the basis of the proofs contained in a later

chapter. At the same time, Chapter II also presents some important underlying

assumptions which, although they do not enter directly into the proofs, influence

the nature of the proposed systems. Chapter IV introduces a system based on a

single vault. This serves the dual purpose of introducing a number of concepts

used in the proposed multiple vault systems, and pointing out a number of

shortcomings of single vault systems which are solved by the systems to be pro

posed.

3

The algorithms which define the operation of the multiple vault systems to

be proposed are presented in Chapter V, using a specially adapted formal

specification language. Then Chapter V1 provides an example of the use of the

algorithms, which demonstrates how a multiple vault system can be established.

Proofs of various security and reliability properties are presented in Chapter VII,

which make use of the assumptions of Chapter III. Analysis of the performance

issues of space, communication, and time requirements of systems based on the

algorithms of Chapter V is presented in Chapter Vlll. Chapter IX presents tech

niques for constructing and placing into operation a secured vault, while main

taining the trust of potentially mutually suspicious groups. The final chapter,

Chapter X, briefly considers work remaining and the implications of the present

work.

Before delving into the supporting literature, however, it is important to

indicate some of the unique contributions of the present work.

§3 What's SoN ew About All This?

Suggested are the novelty and advantages of the present work over

other work known to the author.

This thesis addresses the problem of establishing and maintaining com

puter systems that can be trusted by those who don't necessarily trust one

another. This particular formulation of the problem is believed to be a contribu

tion in its own right. In addition, the present work combines an unusually wide

diversity of security technologies. The tecl).niques presented for allowing con

struction of apparatus which can be trusted by mutually suspicious groups also

appear to be new.

The detailed algorithms presented are the result of several major itera

tions, and are believed to take into account most of the important issues. The

use of cryptography is central to many of the algorithms and is quite a bit more

complex than that reported elsewhere. This motivated substantial extension of

a previously defined specification language in order to integrate a variety of

cryptographic techniques into the type-checking and parameter-passing

mechanisms in a convenient way. Also, a new general problem for computer

network security, "the covert partitioning problem," is introduced along with

algorithms which provide a solution and proofs of their correctness.

5

Chapter II

Survey of the Literature

Considered is some of the literature which lends support to the feasi

bility argument of the present work, and some related work.

This thesis puts forward a proposal for a new kind of highly secure com

puter system. The technologies upon which these systems must be based are

quite diverse and cut across some traditional boundaries. Nevertheless, an

attempt will be made to indicate the feasibility of the proposed systems by

pointing to relevant surveys or directly into the literature.

§ 1 Cryptographic Algorithms

The various types of cryptographic algorithms used in the present

work are discussed with reference to the relevant literature.

Information is encrypted to allow it to pass safely through a potentially hos

tile environment.

Conventional Cryptography

Secrecy. Traditionally, concern has centered on providing the

confidentiality of message content. Consequently, cryptographic techniques

were devised to make it very difficult (in some cases impossible) to transform

encrypted information back to its unencrypted form without possession of a

secret piece of information, called a key. Two correspondents who were the sole

possessors of a key could use it to maintain the secrecy of the message content

of their correspondences. Note that the cryptographic algorithms themselves

are assumed to be public knowledge; only the key need be kept secret.

Ultimately, all cryptographic algorithms can be thought of as transforming

symbols into other symbols. With a Captain Midnight decoder badge, the badge

is the key, and letters are mapped into other letters. The un-breakable Vernam

cipher maps only single bits into other bits, by adding each bit modulo two with

a different key bit [Kahn 67]. On the other extreme, block cryptographic algo

rithms map large strings of bits, called blocks, into other blocks. The National

Data Encryption Standard, for example, maps 64 bit blocks into 64 bit blocks,

using a 56 bit key [NBS 77] . Many blocks can be "chained" together during

encryption, effectively forming a single large block [Feistel 70].

Authentication. The present work assumes the use of block schemes, like

the Data Encryption Standard, which make it very difficult to modify part of an

encrypted block of information without causing drastic changes to the entire

decrypted block. A large serial number can be appended to a block before

encryption; its presence after decryption provides authentication of the block

as a valid block that has not been altered. In such systems, it becomes

extremely difficult for someone without a key to create a block that will contain

a desired serial number when it is decrypted by a keyholder. Two communi

cants with a common key can converse using encrypted blocks of data, checking

the serial number of each received block to ensure that it has arrived in the

proper sequence, and to ensure that it has not been altered [Feistel, Notz and

Smith 75].

Public Key Cryptography

The cryptographic techniques considered so far have the unfortunate pro

perty that a common key must be distributed to the communicants, while it is

kept secret from everyone else. In contrast, consider a fundamentally different

sort of cryptographic algorithm independently proposed by Diffie and Hellman

[76], and Merkle [78]. To use these algorithms, each participant creates a

private key, that is never revealed to anyone else. Only a suitably related public

key is made known to everyone. Here we will be concerned with public key cryp

tographic algorithms (like that of Rivest, Shamir and Adleman [78]) where the

two keys are inverses of one another, in the sense that a block encrypted with

one can be decrypted only with the other.

Sealing. Public key cryptography can be used to provide the secrecy of

message content. A confidential message can safely be sent if it is first seal~d.

an operation which includes encryption with the recipient's public key. Only the

intended recipient can decrypt the received message -because the correspond

ing private key must be used to decrypt it. A large random number is joined to

the message during sealing, to counter two potential threats: (1) if the same

message is sent more than once, such a message will be revealed as such to an

eavesdropper; (2) an eavesdropper's guess of the message could be verified by

encrypting the guess with the public key and then checking if the resulting bits

are identical to the sealed message.

Signing . Authentication in public key cryptosystems is much more useful

than that provided by conventional cryptography, because only a public key is

needed to authenticate a message, and hence anyone, not just the holder of a

secret key, can check the authenticity of messages. Someone signs a message

by encrypting it with their own private key. If a serial number of some agreed

upon structure, such as all zeros for example, is joined to the message during

signing, then its presence after decryption with the corresponding public key

authenticates the signature.

Compression Functions

The so called "one-way" functions were introduced by Purdy [74] as part of

the now familiar method of protecting passwords stored in computer systems.

The one-way function and the image of all the passwords under the function are

publicly readable, but they must be protected from alteration. Thus, the ideal

one-way function is easily computed, but the inverse is computationally infeasi

ble.

For the present work, a compression function will be a special kind of one

way function which maps an arbitrarily large domain into a fixed range, but

which is practically impossible to invert. Such functions are quite handy since

they in effect allow a relatively small number of signed bits to authenticate a

large number of bits. Similar concepts have been described by various authors.

{see Feistel [70] or Needham and Schroeder [78] for example.)

Key Generation

The automated generation of true physical random numbers has received

some attention in the literature {see Knuth [7] for example). Sampling the noise

generated by specially fabricated noise diodes seems to be an excellent source

of raw bits (thermal noise and radioactive decay also seem good, but more

cumbersome), which must then be corrected for bias in the detector.

9

Techniques for perfect correction of independent events with a fixed-bias detec

tor are widely known. (Notice, however, that detector drift and physicl depen

dencies in the source contribute to less than perfectly independent raw bits.)

The simplest such technique takes as input successive pairs of independent bits

and outputs say a 1 bit for pairs of the form 1 0, outputs a 0 bit for pairs of the

form 0 1, and produces no output for the other possible pairs 1 1 and 0 0 [Von

Neuman 51; Gill 72]. It is also possible to combine many random numbers of

some less than optimal entropy to produce a single number of increased

entropy, such as by adding many numbers bit-wise modulo-two.

While details are beyond the scope of the present work, it is important to

notice that many cryptographic algorithms may be quite weak for some choices

of key. Care must be taken to determine if a candidate key is such a weak key

and to randomly create another candidate in such a case.

§2 Applications of Cryptography

Discussed are some or the relatively few publications which assume

good cryptographic algorithms and go on to consider applications.

Many kinds of security rely on the secrecy of their techniques. In contrast,

much of the open literature on cryptography owes its existence to the premise

that such secrecy may not be necessary or even desirable with cryptographic

techniques. Shannon [49] assumes that the cryptographic algorithm is known to

the "enemy" and only the key is secret. Kerckhoffs [1883] made a similar

assumption. Baran [64] provides convincing arguments for making public the

details of what he calls "cryptographic design" which includes the "hardware

details".

There has been much work that considers the use of encryption for com

munications security and data security. The remainder of this section mentions

some of the more relevant work in these areas. Work with a heavy emphasis on

10

Simple Types

Some of the simple types are those usually found in programming

languages. Others are the keys, seeds, and parts of keys used by the crypto

graphic transformations. Yet others are simply enumerated types, ala Pascal,

used as tags included in signed messages to indicate the kind of message. A

special type is used to represent node names. Chapter Vlll contains some dis-

cussion of straightforward representation schemes for instances of the simple

types, and the constructed types of the next subsection, for purposes of

analysis, but further consideration of implementation techniques is beyond the

scope of this work.

A simple context free grammar will be used to illustrate the basic syntax of

the specification language. The first production of the grammar is shown here:

elementary-type --) boolean I integer I time I node-id I
seed I public-key I private-key I partial-key I
proposal-kind I announcement-kind I action-kind I transfer-kind

The following is a detailed definition of each of the elementary types:

boolean, integer The usual.
time The content of a clock or counter. Uniform units are used so

that the difference of two times produces an integer which is
proportional to the amount of time between the two times.

node-id A special type whose values are used to uniquely identify nodes
and trustees, and whose values are never re-assigned.

seed A randomly selected value preferably from a space at least as
large as the space of possible keys , which is returned by the
primitive function create-seed and is used by the primitive
functions create-public, create-private, and form-partial, to
create keys and partial-keys.

public-key A public key that was created by a call to Gen
eraly publicly available, and can be a parameter m calls to seal
and check-signature.

41

private-key A private key that was created by a call to crea.te-priva.te. Gen
erally kept secret by its creator, except may be transferred
during a RESTART. Used in calls to sign and unsea.l.

partial-key A partial value of a private-key that is created by a call to
formrpa.rtial. Sufficient quantities of these keys can be used by
merge-pa.rtials to reconstruct the private key from which they
were formed.

proposal-kind This is an enumerated type, a. La. Pascal, whose values are
denoted by the constants: propose-certify propose-set-minima.
and proposeJT"emove . They are used as inclusions in signed pro
posals of the corresponding names.

announcement-kind
An enumerated type, whose values are used as inclusions in
announcements of proposed actions of the corresponding
names. The unique values are denoted by the constants: cer
tify, set-minima., and remove.

action-kind Used as an inclusion in signed announcements of trustee level 1
actions. The unique values are denoted by the constants: pro
pose, ca.ncel, a.pply, cha.nge-presents, resta.rt, pa.rticipa.te,
crea.te-keys, and cha.nge-keys.

transfer-kind Used as an inclusion in signed output generated by an a
function and intended to be consumed by one or two different
a-functions. The unique values are denoted by the constants:
RESTARLto_ASS UME_APPL!CATION,
PARTIC!PATE_to_RECE!VE_NEW_PARTICJPANT,
PARTIC!PATE_to_NEW_PART!C!PANLRECEIVE.
CREATE_KEYS_to_/SSUE_NEW_PART!ALS&CHANGE_KEYS.
CREATE_KEYS_to_NEW_PARTJCJPANLRECEIVE,
JSSUE_NEW_PARTIALS_to_RECE/VE_NEW_PARTIALS,
RESTARLto_ASSUME_APPL!CAT!ON,
pa.rtia.lsJT"eceived, proposa.l, and checkpoint.

Constructed Types

The elementary types of the previous subsection may be combined into sets

or tables. This is an extension of the original notation proposed by Parnas and

further developed for HDM [Levi, Robinson and Silverberg 79], but resembles the

sets and maps of the SETL programming language [Dewar, Schonberg and

Schwartz Bl]. A set of some elementary type is just an unordered collection of

elements of the type. The usual set operators will be found in the next section.

A table is much like a one or two dimensional array, but it may be sparse and

have non-integer subscript types. The following gives a syntax for these

42

constructed types:

simple-t11Pe ~ elementary-t11Pe I
set of elementary-t11Pe I
table[elementa71rtype] of simple-fwe I
table[elementary-type][elementary-type] of simple-t11Pe 1·

Examples of these constructed types will be found in each subsequent. section of

this chapter.

Simple Primitives

These primitive functions take zero or more parameters, and return a value

of a simple type. Some are generic in that some parameters need not be of any

particular simple type. Such parameters will be shown as type m:ty-type. Many of

the primitives are familiar, like those needed to determine the current time and

perform the usual arithmetic, set, and boolean operations.

A few of the primitives perform the cryptographic functions which were

introduced in Chapter II and formalized in Chapter III. Functions are defined

which create seeds, create keys and partial keys from seeds , and merge partial

keys. The following identity provides an example of the use of the partial key

primitives. It simply asserts that partial-keys formed from a key using a com-

mon seed can be merged back into the original key.

if s =create-seed() then
memerge-partials(Jor7Tirpartial(1, s, m, 2),form-partial(2, s, m, 2))

The following provides detailed definitions of the primitive functions.

43

ere ate-seed()-+ seed
Returns a seed derived from a physically random process
within the instant node, and has no parameters.

ere ate -public (s : seed)-+ public-key
Returns a public key that is a function of the parameter, seed s.

create-private (s:seed) -+private-key
Returns a private key that is a function of the seed s. The
private key corresponds to the public key created by a call to
create-public with the same parameters.

JorTTlr']J artial (n:~m.y-type , s :seed a.: ~my-type , m:integer)-+ partial-key
Returns a partial value of the parameter a, with a threshold
value of m (see merge-partials), using seed s. Calls with
different values or types for n produce distinct partial values.
m different partial values created with identical s are necessary
and sufficient to determine the original value a. The seed s can
not be determined even if all results of all possible calls are
available, and without the seed the values of any call give no
clue about the values of a used in another call.

merge-partials (p:set of partial-key)-+ a: filly-type
Returns the original value of a which was divided into parts by
form-partial . The parameter p must include at least as many
partials formed from the original a as the threshold with which
they were formed.

compress(a:Blly-type)-+i:integer
Returns a cryptographic compression of the argument into an

now()-+time

integer. Thus, given a and i = compress(a.) and the function
compress, it is infeasible, under the assumptions of Chapter III,
for an adversary to produce a.' such that i = compress(a') and
a''¢ a.

Returns the time maintained by the clock of the instant node.

suicide (m:integer) .
A real-time counter is set to count down for an mterval of m,
and if the counter ever reaches 0, the instant vault sets all its
secret V-functions to the value erased and in effect kills itself.

ca.rdinality(s:set of Blly-type)-+integer
Returns the number of distinct members of the sets.

+, -, x-+integer These are the usual infix operations performed on integers.
Also _ applied to two times is an integer.which is negative when
the time on the right is before the time on the left. (See

definition of time.)

44

-, u, n _.set of any-type

The usual infix operators defined on sets, returning sets.

<.~. , ~, >, ~-+boolean
Comparison infix operators.

E: , ~ , !: -+boolean
Set membership, its negation, and subset.

Simple Constants

Besides the standard use of Arabic numerals as literal constants, there are

two major sorts of constants used in the specification language. One kind of con

stant is used to indicate the various vacuous values, such as the empty set, un

initialized or don't-care values, and a special value indicating that all informa-

tion about any previous value of the function is lost. The second sort of constant

is used to reference information certified into the vault initially which specifies

the keys, number and quorum sizes of the two groups of trustees and the

enforced delay intervals on their actions. The certification of constant values

into vaults is covered in Chapter IX.

Of course more elaborate versions of the algorithms presented here might

include mechanisms to allow some or all of the constant values related to the

trustees to be changed during operation of the network-much as the

SET_MJNIMA D-function does in the present algorithms. But such flexibility

may actually prove undesirable, since those supplying information to a system

may not wish to do so if the ground rules for its security can be revised in an

arbitrary way.

A detailed definition of the simple constants follows:

45

empty

undefined
The empty set.

No particular value.

erased No trace or clue is left about the previous value of any v
function with this value.

coo ling -off.Jj_nterv a1

trustee -1-publics

The minimum interval of time required between the time the
last mem~er of a majority of present nodes sig·ns a proposal
and the bme the first node signs the announcement of the
action defined by that proposal.

The set of public keys held by the trustees at level 1 which are
used to check all signatures purported to be made by trustees
at level 1.

trustee -2-publics
The set of public keys held by the trustees at level 2.

trustee -1-quorum
The number of trustees at level 1 whose signatures are
sufficient to authorize anything that can be authorized by
trustees at level 1.

trustee -2-quorum

trustee-l-ids

trustee -2-ids

The number of signatures of trustees at level 2 required to
authorize any proposed action. Also the number of trustees at
level 2 whose trustee partials are required by the replacing
node in a restart.

The set of node-ids which includes one member for each trustee
at level 1. (As mentioned elsewhere, trustees are not nodes,
but this convention greatly reduces the proliferation of types
and typing mechanisms.)

The set of node-ids which includes one element for each trustee
at level 2.

§3 Secret ¥-functions

The ¥-functions which record information not publicly available are

defined, their usc discussed, and initial values given.

Variable functions, or V-functions, ar~ the variables which hold a vault's

state. The Y-functions of a vault can be divided into those which the vault must

keep secret and those which are public knowledge. This section presents the

secret Y-functions; the next section presents the non-secret ¥-functions.

The Y-function definitions presented here usually include three parts: (1) a

heading which defines the name and type of the Y-function; (2) an initial value

46

part that includes the name and an express1·0 n wh 1 · th · ·t· 1 1 ose va ue 1s e m1 1a va ue;

and (2) a comment part which discusses the intended use of the Y..function.

The following productions give the basic idea of the syntax, further details

being supplied in later sections:

v-function ~name :simple-type :V-function initial-value comment

initial-value -+ Initial: name = expression I derivation

comment -+ Comment: wildcard

Vaults must at minimum maintain the secrecy of their private keys upon

which the security of the entire system relies. There will be two different kinds

of secret keys, as mentioned in the previous chapter. Some keys need never be

known outside the vault-these are the node secret keys . Other keys are kept

secret by the vault, but they have been divided into partial keys and provided to

other vaults for use during a restart-these are the application secret keys. In

the following two subsections, each kind of secret Y..functions is considered

separately.

Node Secret Y-functions

The V-functions described in this subsection never leave the vault. When

the vault destroys its own information content, the values of these Y..functions

are set to erased.

This sub-section makes the first formal reference to the notion of sub

partial keys. These are just partials of partial keys. In other words, some thres

hold of sub-partial keys are sufficient to reconstruct the original partial key

from which the sub-partials were originally formed. The algorithms in this

chapter allow the trustees to decide how many, if any, sub-partial keys will be

47

used by the network. The reason for this is that while the use of sub-partials

does provide somewhat more convenience and flexibility in the operation of the

network, they also have non-trivial cost in terms of system resources (see

Chapter VIII for analysis of resource requirements). Sub-partial keys allow a

"quorum" of nodes to, among other things, cause any node not participating in

the last key change to become "participated" and enter a state equivalent to

that which would have been achieved had it participated in the key change, res-

tart nodes in an arbitrary order, and diminish the quorum size. The essence of

this mechanism is that sufficient sub-partial keys allow every quorum of

"present'' nodes to form a partial key for other nodes in the network.

The following are definitions of the node secret l!-functions:

NODE_PRIVATE :private-key: l!-function

Initial value: NODE_PRIVATE =
create-private (let !NITIALNODE_SEED =create-seed())

Comment: The private application key of the instant node. The initial value
uses a l!-function which is local to the initialization process
!NITJAL_NODE_SEED.

NEW_NODE_PRIVATE :private-key: V-function

Initial value: NEW_NODE_PRIVATE =undefined
Comment: Returns the application private key which will be assumed by the

instant node if it is a participant in a CHANGE_KEYS or subject of a PAR
TICIPATE before the next key change. This private key is created by
CREATE-KEYS and corresponds with NEW_NODE-PUBLJC.

PARTIAL_SEED :seed; l!-function

Initial value: PARTIAL-SEED= undefined
Comment: Returns the randomly create·d seed used to form p~rtial keys.

Created and changed by CREATE_KEYS, PARTIAL-SEED ts used by
ISSUE_NEW_PARTIALS and also by the subject node of PARTICIPATE.

48

PARTIAL-KEYS:table[node-id] of partial-key: V-function

Initial value: \::fp PARTIALKEYS[p] =undefined

Comrr:ent: The partial key held by the instant node for the participated node
P 1s PARTIAL_KEYS[p]. The constituent partial keys are received by
RECEIVE_NEW_PARTIALS and by RECEIVE_NEW_PARTICJPANT.

NEW_PART!AL_KEYS :table[node-id] of partial-key: V-function

Initial value: \::fn NEW_PARTIAL_KEYS[n] =undefined

Comment: Returns the new partial key held by the instant node for the
selected node. The value is obtained by RECEIVE_NEW_PARTIALS and
will replace PARTIALKEYS iff the instant node participates in a
CHANGE_KEYS before the next CREATE_KEYS.

SUB -PART/ALS:table[node-id][integer] of partial-key: V-function

Initial value: \::fp \::7'i SUB-PARTIALS[p][i] =undefined

Comment: The partial partial key held b;r the instant node for the partici
pated node n, to be released to the node assuming the ith set of sub
partials. The values are obtained from NEW_SUB-PARTIALS after the
instant node participates in a CHANGE_KEYS. or from the input supplied
to NEW_PARTICIPANLRECEJVE. The SUB-PARTIALS[p][i]s held by a
quorum of present nodes for a particular set of sub-partials indexed by i
are sufficient to allow merge-partials to determine a partial for node p.

NEW_SUB-PART/ALS:table[nodc-id][integer] of partial-key: V-function

Initial value: "dn "di NEW_SUB-PARTIALS[n][i] =undefined

Comment: Returns values accumulated since the last CREATE-KEYS which
will replace SUB -PARTIALS iff the instant node participates in a
CHANGE-KEYS before another CREATE_KEYS.

OWN_ TRUSTEE_PARTJALS:table[node-id] of partial-key: Y:.function

Initial value: "v'n OWN_ TRUSTEE_PART!ALS[n] =undefined

Comment: OWN_TRUSTEE_PART!ALS[n] is a private key which must be
present in the instant node when the instant node is the replacing node in
a RESTART in which node n is the replaced node. Values of
OWN_ TRUSTEE-PARTIALS are obtained by the subject of CERTIFY for_ all
the nodes it is certified for for (except itself), and any values for whlCh
the subject is not certified are erased. In an app~ication where some
different nodes have access to different data, a particular vault may not
be approved to restart some nodes.

49

Application Secret V-functions

Care is taken to ensure that APPLICATION_PRIVATE can be recovered only

with partial keys of the most-recently completed key change, and that

NEW_APPLICATION_PRIVATE can be recovered with partial keys distributed for

the next key change . Of course there is presumably much secret application

data which must be included in checkpoints, and it should also be divided into

current change period and new period -so that obsolete application data

becomes inaccessible once a node changes keys. The aggregate l'-function,

APPLICATION_SECRET_ V-FUNCTIONS, is assumed to contain all application

secret data from the current change period; the aggregate

NEW_APPLICATION_SECRET_ V-FUNCTIONS contains all application data

for the forthcoming key period.

The following are definitions of the two application l'-functions relevant

here, one for each aggregate:

APPLICATION_PRIVATE:private-key: V-function

Initial value: APPLICATION_PRIVATE = create-private(create-seed())

Comment: The private application key of the instant node.

NEW_APPLICATION_PRIVATE:private-key: l'-function

Initial value: NEW_APPLICATION_PRIVATE =undefined
Comment: Returns the application private key which will b.e assumed by the

instant node if it is a participant in a RESTART or subJect .of a PARTICI
PATE before the next CHANGE-KEYS. This private key 1s created by
CREATE-KEYS and corresponds with NEW_NODE-PUBLIC.

50

p

§4 Non-Secret V-functions

Those ¥-functions are pres t d hi h en e w c relate to node state that is

not secret.

Some 11-functions in this section are defined in term f · · 1 s o expresswns mvo v-

ing other Y-functions, and they have a "derivation" part instead of an initial

value part:

derivation ~ Derivation: name = expression

The OWN_NODE Y-function is special in that its value never changes during

the life of a node, but the actual initial value of each node's OWN_NODE must be

unique. No initial value part or derivation is used for OWN_NODE.

As will be seen in Chapter VII, it is quite useful to distinguish those v-

functions whose values must be in agreement across nodes, from those v-

functions which are not subject to any consensus constraint. These two kinds of

V-functions are covered in separate subsections.

Consensus Y-Junctions

The non-secret V-functions presented in this subsection are intended to

have identical value for all nodes with the same value of CYCLE (which is defined

in the next subsection). They define the status of the network. As a notational

convenience, the consensus Y:.functions are denoted collectively as

CONSENSUS_ V-FUNCTIONS.

