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FIG 3 

P B 
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“same as 101, 
but including?’ 
r"i, bi = random 

[11.4]; —> B: r"ief'(b[) 
q" = h(q, [11.4]1,...,[11.4]s) 
“and re-de?ningz" 
p = q"ZrdCe 
[11.3] -> B: zg(p) mod dce 

y 302 
“same as 102, 

but testing insteadz" 
GCD([11.3],cde) ?=? 1 
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"same as 103, 
but including:” 
[13.41] --> B: r"j 
[1351i -> B: b] 

y 304 
“same as 104, but including:" 

[1 1.41- ?=? [1 3.4]jef'([1 3.511) q'" =+1(q',[11.4]1,...,[11.41s) 
b"@k = [11.4]k 

“and re-definingz" 
[14] P <- : 

q'"[11-3]/d¢en[11.1]k1/c(@k)[11.2]k1/d(@k)[11.4]k1/e(@k) 
305 

"same as 105, but testing instead:" 
[14}dce ?=? 
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FIG 6 

P ' B 
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“same as 101, 
but including:" 
x"]" = random 
[11.5]i' -> B: g"(x"j') 

602 
“same as 102, but including; 

[12.1]i- P <- : h([11.5]i-, q‘, [11.3], v)1/d 
603 y 

“same as 103, but including:" 
[12.1]--d" "2-? h([11.5]j', q, [11.3], [12]) 
[13.6ii'_1 -—> B: X"i'_1 

[ 604 

“same as 104, 
but including" 

605 
"same as 105" U 
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FIG 6’ 

P B 

801 
i e {1 ,...,s} 
ri, xi, ai, b; = random 



US. Patent ' Feb. 26, 1991 Sheet 9 of 12 4,996,711 

FIG 9 
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FIG [0a 
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SELECI'ED-EXPONENT SIGNATURE SYSTEMS 

BACKGROUND OF THE INVENTION 

1. Field of the Invention. 
This invention relates to improved cryptographic 

techniques for public-key digital signatures, and more 
speci?cally to such signatures achieving blind signa 
tures and one-show signatures. 

2. Description of Prior Art. 
Known public key digital signatures based on RSA 

?x, at least for a large class of messages, the choice of 
public exponent. One problem with these systems is that 
they must employ a second cryptographic transforma— 
tion, sometimes called a “hash function." Consequently, 
their security is forced to rely at least on the hash func 
tion, and thus not only on the difficulty of ?nding roots 
in the RSA system. 
A somewhat more demanding use of digital signa 

tures was disclosed in U.S. Pat. No. 4,759,063, titled 
“Blind Signature Systems,” issued to the present appli 
cant, also appearing as European Patent Publication 
No. 0139313 dated 2/5/85, and which is incorporated 
herein by reference. Such blind signatures were later 
extended, as described in the co-pending application of 
the present applicant, titled “One-Show Blind Signature 
Systems," ?led 3/ 3/ 88, with U.S. Ser. No. 168,802, now 
abandoned, and also incorporated herein by reference. 
Still other related signatures were described in a co 
pending application of the present applicant, titled “Un 
predictable Blind Signature Systems," with U.S. ?ling ‘ 
date 5/4/89, U.S. Ser. No. 347,303, also incorporated 
herein by reference. - 

These one-show systems appear to have rather wide 
utility, but the amount of data which must be stored can 
be reduced, as can the amount of data communicated. 
The party showing such a signature might wish protec 
tion against false charges that the signature has improp 
erly been shown more than once, particularly in the 
case where the accuser has substantial computing capa 
bilities. 

OBJECTS OF THE INVENTION 

Accordingly, an object of the present invention is to 
remove the need for hash functions or other crypto 
graphic functions in the construction of deterministic 
digital signatures. 
Another object of the present invention is to provide 

a signature issuing procedure that depends on state 
maintained by the signer party and that uses exponents 
from a set only a constant factor larger than the set of 
messages signed. 
A further object of the invention is to provide a blind 

signature that can select distinct public exponents for 
each signature. 

Still another object of the invention is to encode 
information in the choice of exponents that can be re 
vealed in the process of showing such a signature. 
Yet a further object of the invention is to allow the 

party showing a signature to selectively determine what 
information is revealed by determining which secret 
exponents appear in the signature shown. 
A still further object of the invention is to provide for 

paying any of plural amounts with a single signature and 
for receiving a refund for the unspent part of that signa 
ture, all such that the party making the payment can 
not--except with exponentially small chance-both pay 
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2 
some part of a value and receive a refund for that same 
part. . 

Yet a further object of the invention is to give one 
party only an exponentially small chance (even if that 
party has unlimited computing resources) of convinc 
ingly claiming that a second party has entered into a 
subsequent transaction, when that second party has not. 
Even further objects of the invention are to provide 

one-show signatures with reduced space, bandwidth, 
and/or time requirements. 

Still another object of the present invention are to 
allow ef?cient, economical, and practical apparatus and 
methods ful?lling the other objects of the invention. 
Other objects, features, and advantages of the present 

invention will be appreciated when the present descrip 
tion and appended claims are read in conjunction with 
the accompanying drawing ?gures. 

BRIEF DESCRIPTION OF THE DRAWING 
FIGURES 

FIG. 1 shows a ?owchart of a preferred embodiment 
of a withdrawal transaction protocol for a ?rst party 
issuing a one-show signature to a second party in accor 
dance with the teachings of the present invention. 
FIG. 2 shows a flowchart of a preferred embodiment 

of a value-transfer transaction protocol allowing a ?rst 
party to show a one-show signature to a second party in 
accordance with the teachings of the present invention. 
FIG. 3 shows a ?owchart of a preferred embodiment 

of a withdrawal transaction protocol based on modi?ca 
tions to FIG. 1 and incorporating plural amounts of 
value in accordance with the teachings of the present 
invention. 
FIG. 4 shows a ?owchart of a preferred embodiment 

of a value-transfer transaction protocol based on modi? 
cations to FIG. 2 allowing any of plural amounts of 
value to be selected and transferred, all in accordance 
with the teachings of the present invention. 
FIG. 5 shows a flowchart of a preferred embodiment 

of a refund transaction protocol allowing a party to 
obtain credit for any of plural amounts of value not 
previously transferred, in accordance with the teach 
ings of the present invention. 
FIG. 6 shows a ?owchart of a preferred embodiment 

of a withdrawal transaction protocol based on modi?ca 
tions to FIG. 1 giving the withdrawing party a signa 
ture on the transactions details of all signatures which 
that party cannot later successfully disavow, all in ac 
cordance with the teachingsof the present invention. 
FIG. 7 shows a ?owchart of a preferred embodiment 

of a withdrawal transaction protocol for a ?rst party to 
issue a second party multiple one-show signatures, in 
accordance with the teachings of the present invention. 
FIG. 8 shows a ?owchart of an alternate preferred 

embodiment of a withdrawal transaction protocol for 
issuing a one-show signature in accordance with the 
teachings of the present invention. 
FIG. 9 shows a ?owchart of an alternate preferred 

embodiment of a valueatransfer transaction protocol 
allowing a ?rst party to show a one-show signature to a 
second party in accordance with the teachings of the 
present invention. 
FIGS. 10a and 10b shows a ?owchart of a public key 

digital signature technique, in which a common opera 
tion (a) is employed by both parties in a deterministic 
signature issuing and checking protocol (b), all in accor 
dance with the teachings of the present invention. 
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FIGS. 11a and 11b shows a ?owchart of a public key 
digital signature technique, in which a common opera 
tion (a) is employed by both parties in a signature issu 
ing and checking protocol (b) and in which the signa 
ture depends on the number of signatures previously 
issued by the signer, all in accordance with the teach 
ings of the present invention. 
FIGS. 12-14 symbolically depict apparatus for prac 

ticing the exemplary methods of this invention. 

BRIEF SUMMARY OF THE INVENTION 

In accordance with these and other objects of the 
present invention, a brief summary of some exemplary 
embodiments is presented. Simpli?cations and omis 
sions may be made in the following summary, which is 
intended to highlight and introduce some aspects of the 
present invention, but not to limit its scope. Detailed 
descriptions of preferred exemplary embodiments ade 
quate to allow those of ordinary skill in the art to make 
and use the inventive concepts are provided later. 
The simplest signature technique disclosed (FIGS. 

10a and 10b) associates a distinct prime with each dis 
tinct message to be signed. Then an agreed and fixed 
public constant is raised to a power modulo an agreed 
and ?xed composite. The factorization of the composite 
is assumed known only to the signer, and the power is 
the multiplicative inverse of the prime modulo the order 
of the multiplicative group of residue classes modulo 
the composite. Thus, to check the signature, anyone can 
compute the prime from the original message using a 
public and agreed procedure, raise the signature to that 
prime power modulo the public modulus, and verify 
that the result is indeed the ?xed public constant. 
A second disclosed signature scheme (FIGS. 11a and 

11b) is similar, but the signer keeps count of the number 
of signatures issued. The serial number of a signature 
determines a vector of primes that are each distinct 
from those determined by other serial numbers. The 
message to be signed is treated as a binary string, and it 
and its complement are concatenated together, forming 
a string having twice the length of the original message 
string. The vector of primes has the same length as this 
expanded message string, and each prime is considered 
to correspond to a bit position in the expanded message. 
A product is formed of all primes in the vector selected 
by corresponding 1 bits in the expanded message. This 
product serves as the public exponent that can be used 
as in the simple scheme just described. 
A one-show blind signature technique is described in 

FIGS. 8 and 9. Unlike known schemes, a distinct prime 
is associated with each bit of the essential content of the 
resulting signature. During withdrawal, because of the 
“cut-and-choose” technique employed, roots corre 
sponding to only some of these primes are obtained by 
the payer making the withdrawal, but the bank is unable 
to learn which particular roots the payer obtains. Thus 
a blind signature is formed in which the message con 
tent is encoded by the subset of roots obtained. When 
the payer shows the signature to a shop, only a part of 
the roots held by the payer are revealed, the part being 
selected by the shop’s challenge. 
Another one-show blind signature protocol is pres 

ented in FIGS. 1 and 2. Unlike FIGS. 8 and 9, the payer 
receives the full set of roots during withdrawal. But 
during payment, again only those roots selected by the 
challenge are shown. Reference should be made here to 
the already mentioned co-pending application titled 
“Unpredictable Blind Signature Systems.” 
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The techniques of FIGS. 1 and 2 are extended by 
those of FIGS. 3 and 4, respectively. So-called “minor 
terms” are included that each correspond to a ?xed 
denomination of value. When a signature issued in FIG. 
3 is spent in an instance of FIG. 4, some of these minor 
terms are revealed, corresponding to the amount of 
payment. Later, an instance of FIG. 5 can be conducted 
in which the payer receives “credit,” i.e. any appropri 
ate form of compensation, for those minor terms not 
revealed in the payment. This refund is accomplished 
by the payer demonstrating knowledge of roots of the 
so-called “blinding factors” that are present in the 
blinded forms of the minor terms-but without the 
payer revealing which blinding factor was in which 
minor term. 

If a payer receives from the bank a signature on all 
details of every withdrawal that the payer may be re 
sponsible for, then the payer is protected against false 
incrimination by the bank; even thought the bank could 
manufacture and spend repeatedly a signature contain 
ing the payer’s account identi?er, the payer could al 
ways reveal roots of blinding factors that would prove 
such a check to be bogus. In FIG. 6 a general technique 
is given that allows the payer to be sure to have a signa 
ture on each such withdrawal and which prevents the 
bank from being able to falsely claim that a subsequent 
withdrawal has taken place. Even in?nite computing 
resources cannot help the bank falsely incriminate, be— 
cause insuf?cient information is disclosed to allow the 
bank to determine which secret values are held by the 
payer, and if two values satisfying the public informa 
tion were to become known, then at least part of the 
bank’s cryptosystem would be shown to have been 
compromised. 

Finally FIG. 7 shows how the effect of multiple in 
stances of FIG. 1 can be achieved in a single transac 
tion, thereby yielding substantial economy. Many “can 
didate” factors are provided by the payer, and the bank 
demands to see how some were formed and divides the 
others into checks. It is believed that this technique not 
only reduces the amount of computation needed to 
form each candidate, but also reduces the number of 
candidates that need be shown in FIG. 2. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

While it is believed that the notation of FIGS. 1-6 
would be clear to those of ordinary skill in the art, it is 
?rst reviewed here for de?niteness. 

It will be understood by those in the art that the 
flowcharts depicted in the Figures are symbolic repre 
sentations of both method and apparatus for implement 
ing this invention. The depicted blocks may be realized, 
for example, by conventional general purpose data pro 
cessing hardware programmed to perform the depicted 
data processing steps. Alternatively, one may use spe 
cial purpose data processing hardware using conven 
tional hardware design methods to devise circuits to 
perform the depicted data processing steps. The de 
picted interconnecting lines may be realized by conven 
tional data communication methods, devices and cir 
cuits. 
The operations performed are grouped together into 

flowchart boxes. The column that a box is in indicates 
which party performs the operations de?ned in that 
box. The columns are labeled by party name across the 
top: “P” for provider, “S” for signature checker, and 
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“B” for blind signature issuer. Alternatively, these may 
be read as payer, shop, and bank, respectively. 
One kind of operation is an equality test. The “?=?" 

symbol is used to indicate such a test, and the party 
conducting the test terminates the protocol if the equal 
ity does not hold. (If the test is the last operation to be _ 
performed by a party during a protocol, then the suc 
cess or failure of the test determines the party’s success 
or failure with the protocol.) 
Another kind of operation is that of sending a mes 

sage. This is shown by a message number on the left; 
followed by a recipient name and an arrow (these ap 
pear for readability as either a recipient name then left 
pointing arrow, when the recipient is on the left; or 
right pointing arrow then recipient name, when the 
recipient is on the right); followed by a colon; ?nally 
followed by an expression denoting the actual value of 
the message that should be sent, shown using variables 
whose values are known to the sender. (These opera 
tions are depicted in a “bold” typeface for clarity.) 
Square brackets are used to delimit message numbers. 
Messages may be distinguished by subscripts, which 
will be described later, and are shown outside the brack 
ets. 
The further operation of saving a value under a sym 

bolic name is denoted by the symbolic name on the 
left-hand side of an equal sign and an expression on the 
right-hand side. These and other operations may be 
delimited by being shown on separate lines as well as by 
semicolons “;" dividing a single line; other operations 
occupy multiple lines. 

Several kinds of expressions are used. One is just the 
word “random.” This indicates that a value is prefera 
bly chosen uniformly from an appropriate set of values 
defined in the text and independently of everything else 
in the protocol. Thus a party should preferably employ 
a physical random number generator for these purposes, 
possibly with appropriate post-processing. In practice, 
however, well known keyed and unkeyed crypto 
graphic and pseudo-random techniques may be applied, 
possibly in combination with physical sources. 
A further kind of expression involves exponentiation. 

All such exponentiation is in a ?nite group, say, for 
example, the multiplicative group modulo a composite 
modulus m. When no operation is shown explicity, 
multiplication in such a group is assumed. When “/" is 
applied between elements of such a group, the result can 
be calculated by ?rst computing the multiplicative in 
verse of the expression on the right and then multiply 
ing it by the expression on the left——this operation may 
also be described simply as division. When the “/" is 
used between exponents, and if the result is a proper 
fraction, it indicates a corresponding root, as is well 
known in the art. 

Suitable moduli have been proposed in “A method 
for obtaining digital signatures and public-key cryp 
tosystems,” by Rivest, Shamir and Adleman, Communi 
cations of the ACM, Feb. 1978, pp. 120-l26. For sim 
plicity, concreteness, and clarity, and without loss of 
generality, all elements subject to exponentiation will be 
taken to be residues modulo the RSA modulus m of 
party B, unless mentioned otherwise. The public expo 
nents of party B used in all the ?gures are taken for 
simplicity to be, as is common practice in the art, co 
prime with the order of the multiplicative group used in 
the exponentiation. 

In particular, the public exponents of FIGS. 1-6 are 
are d(i) and c(i), with the product of the d(i) being 
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6 
shown as d and that of the c(i) as c. In FIGS. 3-5, fur 
ther exponents c(j) are included, whose product is taken 
as e. It will readily be appreciated by those of skill in the 
art how additional factors could be included in c,d, and 
e to increase the number of coprime residues to protect 
against a valid signature being guessed. 
The “mod” operation is shown explicitly when it is 

called for in calculations involving exponents. Also the 
“div” operation is used, which may be thought of as the 
integer remainder when the value on the left side is 
divided by that on the right. 
The functions f,f',h are public one-way functions 

whose images are elements of the multiplicative group 
modulo m. The functions are taken to be “collision 
free” in the usual sense that it is believed at least compu 
tationally difficult to ?nd multiple pre-images that result 
in the same image. Since the ?rst two may have rather 
limited input domains, say, for example, on the order of 
32 or 128 bits respectively, they can be made in effect 
collision free by being made injective. As would be 
obvious to those of skill in the art, it should be dif?cult 
to ?nd any structure in these functions that can be re 
lated to the group or ?eld structure of their images. 
Another public one-way function notation used is g. 

In some embodiments, g can have an output limited to 
the natural numbers less than and coprime with the 
public exponent used, as in the co-pending “unpredict 
able blind signatures” application already mentioned. 

Yet another function used is g’. Its ?rst argument is 
preferably perfectly hidden by the second. Notice that 
any function of such a function also has this property. 
This sort of function has been used in the co-pending 
application titled “One-show blind signature systems” 
already mentioned. 

Still another function used is h’. Its single argument is 
crptographicaly compressed to a preferably smaller 
range of possible values. An example is the so called 
“hard bit” functions widely known in the art that com 
press a residue modulo m to a single bit. Other compres 
sions could be less severe, having images requiring on 
the order of 2 to 32 bits, for example. 
A further type of expression involves particular well 

known operations. One example is the in?x binary oper 
ator Q, which may be taken as the bit-wise exclusive-or 
operator on the binary string representation of its two 
arguments. Any other suitable group operation could of 
course also be used. Another example is the well known 
GCD operation, which returns the greatest common 
divisor of its two arguments. 
Another type of expression used in the exemplary 

embodiments relates to ordered sets of integers without 
multiplicities. For example, {1, . . . , t} denotes the set of 
integers from 1 to t inclusive in increasing order. Such 
sets may be combined with “-”, the usual set differ 
ence operation, where the resulting order is ?xed by 
some convention. The cardinality, or number of ele 
ments in a set, is denoted by enclosing an expression for 
the set within vertical bars “I”. The set membership 
symbol “6” is used to de?ne an index variable that runs 
over all the values in a set; thus, computations and mes 
sages involving an index variable are repeated for each 
value it takes on. In particular, the well known “1r" 
notation is used to indicate that the product is formed of 
all values induced in the expression on the right by the 
different values of the index variable used in that expres 
sion, as will also be described. 

Elements within a set are indexed by their position. 
For instance, consider the set w={9,5,7} and jaw, then 
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w(l) is 9, w(2) is 5, and w(3) is 7. The @ operator is used 
to indicate the position of the value of an index variable 
within the index set it ranges over. For instance, when 
j=9 then @j=1, and when j=5, @j=2. Double sub 
scripting is indicated, for clarity, without a comma 
separating the subscripts. Indexing in general is shown 
either using subscript notation or with the index in pa 
renthesis. An effort has been made, though, to be consis 
tent in this choice for each variable. As will be appreci 
ated, the parenthesis notation has been used for those 
messages and variables appearing in the superscript or 
subscript positions. 

Turning now to FIG. 1, the ?rst part of a ?owchart 
. for the preferred embodiment will now be described in 

detail. It may be thought of as a withdrawal transaction, 
in which party P withdraws a certain amount of value 
from party B. 
Box 101 shows party P ?rst choosing r,-,ai,r’,-, indepen 

dently and uniformly at random, such random selection 
as already mentioned above. For each value of i, which 
is shown ranging from 1 to s, a separate random choice 
is made for each of the three. All the values are chosen 
from the residues modulo the modulus m already men 
tioned. Another value shown chosen from the same 
distribution is r. A ?nal value chosen at random is 2, 
which is believed preferably taken from the integers 
between 1 and dc that are coprime with do. 
Next P forms s messages [11.1]1 through [11.1],. The 

i’th such message is formed as a product of r,- raised to 
the c power times the image under f of a,~. Each of these 
messages is sent by P to B. Similarly, 5 messages [11.2]i 
are formed as r’; raised to the d power, the quantity 
times an image under f. The argument for f is a,- exclu 
sive-or’ed with a quantity u. It is expected that u will be 
known to both P and B. In some embodiments u would 
serve to identify P or an account that P is associated 
with. It also may be that u is not constant but varies for 
each message, such as by being concatenated with a 
message counter or the like. Again, each of these mes 
sages is sent by P to B. 
Another operation of this box is to compute the value 

q. As will be appreciated, such a value could also be 
chosen by B, but the embodiment shown here at least 
has the virtue of allowing pre-computation by P before 
communication with B. The hashing function h is ap 
plied to all 2s messages just described and the resulting 
residue modulo m is taken as q. The value p is next 
shown being computed as the product of q raised to the 
2 power, the quantity times r raised to the dc power. 
The last operation in this box is the sending of mes 

‘ sage [11.3] from P to B. Its value is a ?rst number re 
duced modulo the value dc. This ?rst number is the 
product of z and the function g applied to the value p 
just described. 

Box 102 indicates that, after receiving message [11.1],', 
[11.2113 and [11.3] for all i between 1 and s, B creates a 
random index set v of integers such that it contains t 
elements and the elements are chosen uniformly as inte 
gers between 1 and s. Then B sends this set v to P as 
message [12]. An additional check made by B is that the 
greatest common divisor, GCD, of message [11.3] and 
dc is l; in other words that the two values are coprime. 
Box 103 describes ?rst how this set received as mes 

sage [12] by P is tested by P to ensure that its cardinality 
is exactly t. Then the variable 3' is allowed to range over 
the elements not in the set [12], in other words, j ranges 
over the complement of [12] with respect to the univer 
sal set containing the integers between 1 and s. For each 
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value of j, P sends B rjas [13.11], aj as [13.2],-, and r'jas 
[13.3 -. 

Bo]; 104 ?rst illustrates the setting of an index vari 
able 3’ to range over all values in the set v already men 
tioned in box 102. For each value of j, the construction 
of messages [11.1],- and [11.2],- already received is tested 
by re-computing their values from message [131]], 
[13.21], and [13.3]/-received. The ?rst, [13.11], is tested for 
equality with the product of [13.1],- raised to the c, the 
quantity times the image under f of [13.21]; The second, 
[11.21], is tested for equality with the product of [13.3]j 
raised to the d, the quantity times the image under f of 
[13.2],- exclusive-or’ed with the value u already men 
tioned. 
The value q’ is computed, just as it was in box 101 

under the variable name q, by applying the hashing 
function h to all the messages [11.1] and [11.2] in the 
same order as used in box 101. 
The index variable k is allowed to range over the set 

v mentioned in box 102. The message [14] is computed 
and sent to B. Its value is a product of two factors. The 
?rst q’ raised to a power that is calculated as message 
[11.3] divided by dc. The second factor is a product 
ranging over all values of k. One factor in the product 
is message [11.1]k raised to a power. This power is the 
reciprocal of the element c(i), where i is the current 
index of k in v, which as already mentioned is denoted 
@k. The second factor in the signature is message 
[11.2]k raised to the 1 over d(@k). 
Box 105 depicts ?rst the same same setting of index 

variable k to range over the complement of the set 
contained in message [12] received in box 103 above. 
Then equality is tested between received message [14] 
raised to the power cd,q raised to the [11.3], and a prod 
uct over k. The ?rst of two factors in this product is 
message [11.1])‘, the quantity raised to the do over 
c(@k); the second is [11.2]k to the dc over d(@k). 

Next p is computed by multiplying certain factors 
into, and dividing others out of, message [14] received. 
The ?rst factor put in is q raised to a power that is the 
result of a div operation, as already described. The left 
of the div is the product of 2 times g applied to p, and 
the right side is the product dc. The second and ?nal 
factor included is r raised to the image of p under g. A 
product over all k of two factors is taken out. The ?rst 
of the two factors is rk raised to the c over c(@k). The 
other factor is r'k raised to the d over d(@k). 

Finally, a variable is re-indexed for notational clarity 
and also possibly to save storage. The variable a’ with 
subscript @k is given the value ak; in other words, only 
those values of a that were not revealed in box 103 need 
be retained, and they can be stored under the index set 
1 to t that corresponds to the exponents they have in p’. 
Turning now to FIG. 2, the second ?owchart for part 

of the preferred embodiment will now be described in 
detail. It may be thought of as a payment transaction, in 
which party P transfers to S an amount of value. 
Box 201 begins with P forming message [21] from the 

value p, the computation of which was already de 
scribed in box 101. 
Box 202 shows that, after receiving message [21], S 

chooses an index set w at random from the subsets of 
the set of integers between 1 and t. Then S sends w to P 
as message [22]. 
Box 203 is ?rst an indication that i ranges over the 

index set received as message [22]. Then, for each value 
of i, message [23.1],- is sent with content a’,~, as saved 
from box 101'. Next index variable j is allowed to range 
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over the complementary set, i.e. those values between 1 
and t that are not in [22].'For each value of j, message 
[23.2]; is sent to S containing the exclusive-or of u and 
a’; already mentioned. 
Two temporary variables are de?ned at this point for 

notational clarity. One is d’, which is taken to be the 
product over all'i of the d(i). The other is c’, which is 
similarly de?ned as the product over the c(j). 
The ?nal message of this box, [23.3], is then sent. It 

consists of p’ raised to a power and divided by a value. 
The power is the product of d’ and c’. The divisor con 
tains two multiplicative factors. The ?rst factor is the 
product over all j of the image under f of each a'j, where 
each image is raised to a corresponding d’c' over c(j). 
The second is the product over all i of the image under 
f of each exclusive-or sum of an a'iand u, each raised to 
the do’ over d(i) power. 
Box 204 represents the ?nal testing by S. First the 

index variable i is allowed to range over the set w; j is 
similarly allowed to range over the complement of w 
also as already described in box 203. 
The ?nal equality is then tested. On the left side is 

message [23.3] received raised to a power. The power 
has as numerator the product dc and denominator prod 
uct of d’ and c’. The right side is the product of three 
factors: The ?rst is message [21 ] raised to a power 
determined as function g already de?ned applied to 
message [21]. The second is the product of the image 
under f of each message [23.1],- raised to a power. This 
power is dc divided by c(i). The third and ?nal is simi 
larly the product of the image under f of all the mes 
sages [23.2],~ received, each raised to the corresponding 
do over d(j) power. 

Turning now to FIG. 3, the third flowchart for part 
of the preferred embodiment will now be described in 
detail. It may also be thought of as a withdrawal trans 
action, in which party P withdraws a certain amount of 
value from party B. For clarity in exposition, only addi 
tions and modi?cations to FIG. 1 are shown; they yield 
a new ?owchart, which has further features, bene?ts, 
and advantages that will be more fully appreciated with 
reference to FIGS. 4-5. 
Text appearing in quotes in FIGS. 3-5 indicates the 

source box where operations are drawn from to com 
plete the box containing such text. Four types of refer 
ence are made: (1) an indication of the source box, by 
“same as box xxx:”; which new operations are to be 
added, by “including:”; which operations from the 
source box are to be replaced by new operations instead 
of being copied, by “re-de?ningz”; and which tests of 
the source box are to be replaced, by “testing instead:”. 
Box 301, accordingly, indicates ?rst three operations 

that are to be included from source box 101 to obtain 
the new ?owchart. The ?rst of these is the additional 
random selection of r",~from the residues modulo m, and 
the selection of b; from some suitable domain, such as, 
for example, the bit strings of length 50 to 300 bits. It is 
believed that the choice of this parameter should be 
made to avoid collisions with acceptable “birthday 
paradox” probability, depending on the expected .num 
ber of b,-that will be used for the lifetime of m, c, d, and 
e. It should also be pointed out that the choice of z is 
believed preferably coprime with dce here, rather than 
only with do as in FIG. 1. 
The second new operation is the sending of s mes 

sages [11.3]; to B. The i’th such message contains the 
product of r"; raised to the e power times the already 
described function f’, applied to by. The third new oper 
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10 
ation is the setting of temporary variable q" to the image 
under function h of q (from box 101) concatenated with 
message each [11.4],‘. The intention here is to ensure that 
q" depends via cryptographic function h on all the 
messages sent in the new box 301 except message [11.3]. 
Two operations are indicated as being re-de?ned. 

The ?rst is the setting of p. The operation of box 101 is 
not performed; instead, p is set to the product of two 
factors. The ?rst factor is q" raised to the 2 power; the 
second is r raised to the dce power. The other operation 
is the sending of message [11.3] to B. The value sent is 
the product of z and the image of p under g, with the 
whole quantity reduced modulo dce. 
Box 302 then de?nes its difference with box 102 as the 

replacement of the test in the later by a test that message 
[11.3] is coprime with dce. 
Box 303 shows the addition to box 103 of the sending 

of two sets of messages, each indexed by j. The ?rst, 
[134]], contains r"j, and the second, [13.51], contains bj. 
Box 304 is ?rst the inclusion of three operations into 

box 104. The ?rst operation tests the construction of 
each message [11.4],- by comparing its equality with the 
product of message [13.4],- received raised to the e, the 
quantity times the image under f’, of message [13.51] 
received. The second operation de?nes q’” as the image 
under h of q’ and all the [11.4],~, for i in {1, . . . ,s}. The 
third operation saves a value for later use in FIG. 5. The 
value is denoted b”@k and receives value [11.4]k, where 
this notation as already described indicates a re-index 
mg. 
The ?nal operation shown in box 304 is the re-de?n 

ing of message [14] to be the product of two factors. 
The ?rst factor is q’” raised to a power shown as the 
quotient of message [11.3] over the product dce. The 
second factor is the product over k of three terms. The 
?rst two are as in FIG. 1—i.e. message [11.1]k to the 1 
over c(@k) and message [11.2]k to the 1 over 
d(@k)-and the third is message [11.4]k raised to the 
inverse of e(@k). 
Box 305 illustrates ?rst an alternative test to that 

shown in FIG. 1. The value of message [14] is raised to 
the dce power and compared for equality with the 
product of two factors. The ?rst factors is q” raised to 
the [11.3] power. The second factors is again the prod 
uct over k of three factors. The ?rst of these is [111]]. 
raised to the dce over c(@k) power, the second is 
[11.2]k raised to the dce over d(@k) power, and the 
third is [11.4]k raised to the dce over c(@k) power. 

Next'p’ is re-de?ned. The ?rst of two factors multi 
plied into message [14] is q” raised to a power that is the 
div of 2 times g(p) on the left and dce on the right. The 
second such factor is r raised to the g(p) power. The 
product over k of three factors is divided out: rk raised 
to the 0 over c(@k), r’k to the d over d(@k), and r"),- to 
the e over e(@k). 

Finally, two re-indexings are included for use in 
FIGS. 4-5. The ?rst sets b’ indexed by @k to b indexed 
by k, the second assigns r’” subscripted by @k the value 
of r" subscripted by k. 
Turning now to FIG. 4, the fourth flowchart for part 

of the preferred embodiment will now be described in 
detail. Like FIG. 2, it may be thtought of as a payment 
transaction wherein P transfers value to B. Cooperating 
with FIG. 3, however, the amount of value transferred 
is not ?xed at the time of withdrawal, but rather can be 
chosen at the time of payment to be any one of plural 
possible amounts. 
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The actual amount may be represented by a subset w’ 
of the integers between '1 and t, where this subset is 
assumed known to both parties. One example rule for 
encoding values by this set is: if a number appears in the 
set, then the corresponding bit in the binary representa 
tion of the amount is 1; otherwise it is 0. If w’ were, say, 
to be {1,3,5}, then the amount would be 10101 in binary, 
which is 21 units of value. Other denomination schemes 
are of course readily conceived. 
Box 401 indicates that its content is the same as that of 

box 201. 
Box 402 similarly shows that its content is identical 

with that of box 202. 
Box 403 ?rst depicts the inclusion in box 203 of letting 

k range over the values in w’ and letting k’ range over 
the values in the complement of w’ with respect to its 
universal set of {1, . . . ,t}. Also depicted in this ?rst part 
is the sending of b'k as message [234]}, to B. Further, e’ 
is de?ned as the product over k’ of the e(k’). The value 
of message [23.3] is shown as rede?ned to be the raising 
of p’ to the product d’, c’, and e’; and then dividing this 
quantity by three further products: f applied to the a’, 
the quantity to the d’c’e’ over c(j) power; f applied to 
the a’; exclusive-or’ed with u, the quantity to the d'c'e' 
over d(i) power; and f, applied to b’k', the quantity to 
the d'c’e' over r(k') power. 
Box 404 at last illustrates ?rst including in box 204 

also the setting of k to range over w’ and k’ to range 
over the complement of w'. The ?nal difference with 
box 204 is in the testing of message [23.3] received. The 
left-hand-side of the equality test shows [23.3] raised to 
a quotient. The numerator is dce, and the denominator 
is the product of three products: the d(i), the c(j), and 
the e(k’). The right-hand-side has four factors. The ?rst 
is message [21] received raised to the image under g of 
message [21]. The second is the product of all the [23.1], 
received, each raised to the dce over c(i) power. The 
third is similarly the image under f of each message 
[23.2]; raised to the quotient of dce and the correspond 
ing d(j). The fourth and ?nal factor is the product of the 
images under f’, of messages [23.4]k received, each 
raised to dce over e(k). 
Turning now to FIG. 5, the ?fth ?owchart for part of 

the preferred embodiment will now be described in 
detail. It may be thought of as a refund transaction in 
which P is returned some value that could have been 
but should not have been transferred in an instance of 
FIG. 4. As will be appreciated, each instance of FIG. 4 
may give rise to several instances of FIG. 5, although 
these could be combined as will be mentioned later. 
Box 501 ?rst shows how P forms message [51.1] as 

b’ij. The ?rst subscript i ranges from 1 to t and corre 
sponds to the subscripts of FIGS. 3-4. The second sub~ 
script, which is indicated without separating comma as 
already mentioned, indicates an instance of FIG. 3. 
Without loss of generality, it will be assumed here that 
there are 11 instances of FIG. 3 that might correspond to 
this b’,-. As will be appreciated when FIG. 7 is consid 
ered in detail, the same notation is used there when the 
effect of n instances of FIG. 3 are achieved with advan 
tages in a single transaction. 
A second message is also sent to B, [51.2], indicating 

the value of i used as the ?rst subscript of the value sent 
as message [51.1]. 
Box 502 expresses how B ?rst chooses a value x at 

random from the domain of the bit-strings of length 
equal those produced as images of function h’ already 
mentioned. Next B lets n range over the interval 1 to n 

10 

30 

35 

40 

45 

55 

60 

65 

12 
inclusive. Finally, for each j, B sends a message [52]jthat 
is formed as the exclusive~or of x and an image under h’. 
The argument for h’ is a quotient raised to the lover 
e([51.2]) power. The quotient’s numerator is b” (sub 
scripted by received message [51.21) saved from the j’th 
instance of box 304. Its denominator is the image under 
t', of message [51.1] received. 
Box 503 indicates how P ?rst forms y at random form 

the possible second arguments of function g’ already 
mentioned. Next x’ is computed as the exclusive-or sum 
of message [52] received and the image under h’ of r’” 
subscripted by i (retained from the j’th instance of box 
305). Then g’ is applied with x’ as ?rst argument and y 
as second argument, and the result is sent to B as mes 
sage [53]. 
Box 504 illustrates how B sends x to P after message 

[53] is received. 
Box 505 shows how P ?rst tests received message [54] 

for equality with x’. When this test succeeds, P sends y 
to B as message [55]. 
box 506 speci?es how B tests message [53] for equal 

ity with the image under g’ of x as ?rst argument and 
message [55] received as second argument. 

It is believed that the above allows P to hide the value 
of j from B even unconditionally, while allowing P only 
a chance of l in the number of images of h’ of cheating. 
As will readily be appreciated by those of ordinary skill 
in the art, plural instances of FIG. 5 could be conducted 
in parallel, with the corresponding messages of all in 
stances sent as single physical transmissions. And it 
would also be apparent in such an anticipated use how 
multiple x’ could be combined, such as by concatena 
tion, for economy within a single image under g’, and 
how a single y would still suf?ce. 
Turning now to FIG. 6, the sixth flowchart for part 

of the preferred embodiment will now be described in 
detail. It expresses modi?cations to some boxes‘ of 
FIGS. 1, thereby offering further features and advan 
tages. In particular, it illustrates how P can be protected 
against B falsely claiming that P has acted improperly 
by, for example, transferring value to one or more S's 
based on the same instance of message [14] already 
mentioned. This protection would be exercised, as 
would be obvious to those of skill in the art, by P show 
ing some or all of the a,~, n, and r’; not revealed to B in 
FIG. 1. 
A function g” is introduced for this purpose, and it is 

believed to preferably have certain properties to in 
crease security for P, and in fact it could even be chosen 
in whole or in part by P. There should, at least with 
high probability on average, be multiple pre-images 
under g for each image used. The number of such pre 
images should preferably be such that its reciprocal is an 
acceptably small chance that B cheats. For example, 232 
might be suitable for some applications. It is believed 
preferable that each image under g” has substantially 
the same number of pre-images. 
One example construction would be simply to trun 

cate, say by 32 bits (although of course any other num 
ber could be used in the following examples), the image 
of a bijective one-way function, such functions as are 
well known in the art. A second example, which has 
certain advantages to be described, is a function that 
maps 32 residues modulo in into their squares modulo m 
and yields the concatenation of the 32 squares as its 
result. It is believed that obtaining multiple distinct 
pre-images of such a g" would allow in to be factored 
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and the chance of B guessing the correct pre-image 
would remain only 2-32.. 
Box 601 indicates how box 101 is modi?ed by includ 

ing the two operations shown. The ?rst is random 
choice of message x";' from the domain of function g 
already described above. It should be clear to those of 
skill in the art that this index j’ is a serial number of the 
instance of this transaction. The second operation is the 
sending of message [11.5]; to B. The message content is 
the image under g" of x";. 
Box 602 shows an extension to box 102. It consists of 

sending message [12.1]; to P. The message contains the 
l/ " power of an image under h. Its arguments are 
message [11.5]; received, q’ (computed here in addition 
to or instead of in box 104 or 304), message [11.3] from 
box 101 or 301, and v. (It will be appreciated by those of 
skill in the art how some of the arguments of h apart 
from the ?rst could be omitted without departing from 
the inventive concepts here disclosed. Also, the same 
function h used in FIGS. 1, 3, and 7 is preferably used 
here, though another suitable collision free function 
could as well be used.) 
Box 603 denotes the inclusion of two operations in 

box 103. The ?rst is an equality test with message 
[12.1]; received and raised to the d" power on the left. 
The right side is an image under h of four arguments: 
message [11.5];, variable q from box 101, message [11.3] 
sent in box 101, and message [12] sent in box 102. 
Box 604 portrays the including in box 104 of an equal 

ity test. One side is g" applied to message [13.6] received 
in the previous (j'—1’th) instance of the present ?ow 
chart; the other side is message [11.5] also from that 
same most recent previous instance. 
Box 605 is shown as being the same as box 105. 
Turning now to FIG. 7, the seventh part of a ?ow 

chart for a preferred embodiment will now be described 
in detail. It may be thought of as a withdrawal transac 
tion, in which party P withdraws a certain amount of 
value from party B at once in the form of n separate 
signatures. 
Box 701 shows how party P ?rst lets i range from 1 to 

t,k from 1 to s, and j from 1 to n. Then, for each value 
of i and k, rik, aik and r’ik are chosen independently and 
uniformly at random from the residues modulo m. It 
will be appreciated that each of these three may be 
thought of as a t by k matrix. A vector of n such residues 
is also chosen and called r;. A ?nal random choice is the 
vector z(j) of n random values between 1 and dc that are 
believed preferably coprime with dc. 
The ?rst messages shown as sent to B are [71.1],-k, the 

combination of which may be thought of as a t by 5 
matrix of residues, each formed as the product of the 
corresponding rik raised to the c(i), the quantity times f 
applied to aik. Similarly each message [71.21% denoted as 
sent to B, which may be thought of as collectively form 
ing a t by 5 matrix of residues, is the product of the 
corresponding r’,~k raised to the d(i), the quantity times 
the image under f of the exclusive-or of aik with u. 
For each value of j, an image under h is formed that 

depends on j as one argument and the product of all the 
[71.1]1k as well as the [71.2],'k as the other argument. It 
would be obvious to those of skill in the art, however, 
that the concatenation of all these values, or many es 
sentially equivalent but preferably non-algebraic other 
way of combining them, might be preferred, with the 
product being shown here for notational clarity only. 
Also for each j, p(i) is formed as the product of two 
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factors. The ?rst is q; raised to the z(j) power, the sec 
ond is r; raised to the dc power. 
The ?nal vector of n messages formed in this box and 

sent to B is shown as [71.3](j). For each j, what is sent is 
the reduction modulo do of z(j) times g applied to p0). 
Box 702 indicates that, after receiving message 

[71.1],-k, [71.2],‘k, and [71.3](j) for all i between 1 and t, k 
between 1 and s, and j between 1 and n, B creates a set 
of n random index sets v,- of integers. Each such set 
contains exactly n elements and these elements are 
chosen uniformly as distinct integers between 1 and s. 
Then B sends these sets to P as message [72](i). An 
additional check, believed preferably made by B, is that 
each message [71.3](j) is coprime with dc. 
Box 703 describes ?rst how P tests each such set 

received as message [22](i) to ensure that its cardinality 
is t. Then the variable k’(i) is allowed to range over the 
elements not in the set [72](i), in other words, j ranges 
over the complement of [72] with respect to the univer 
sal set containing the integers from 1 to s. As will be 
appreciated, the notation k’(i) has been used here and 
throughout the following for clarity simply as a re 
minder that k' does in fact depend on i. For each value 
of i and each value of k’(i), P sends B message [73.1],~k'(,) 
containing rik'g), message [7321mm containing aik'm, and 
message [73.3],~k'(,) containing r'ik'(,)_ 
Box 704 ?rst illustrates the setting of index variable 

k’(i) by B to also range over the complement of set v,- as 
already described for box 703. For each value of i and 
k’(i) the formation of messages [71.1],~k'(,) and [11.2],-k'(,) 
already received is tested by re-computing from mes 
Sage Willi/c(i). [732]» and [73-2]ik’(r')received. The ?m, [73. 11v, 
is tested for equality with the product of [73.1],-k'(,) 
raised to the c(i), the quantity times the image under f of 
[73.2] v. The second, [71.2],~k'(,-), is tested for equality with 
the product of [1331,1507 raised to the d(i), the quantity 
times the image under f of the quantity [7321mm exclu 
sive-or’ed with u. 
The value of q'jis computed, just as it was in box 701 

under the the variable name q;, by applying the hashing 
function h to j and all the messages [71.1]”, and [71.2],~k 
in the same order as used in box 701. 
At last messages [74]; are sent to P. The j’th such 

message is computed as the product of two factors. The 
?rst is q’; raised to a power that is the quotient of mes 
sage [71.3](j) over dc. The second factor is the product 
of two products over all i in l to t. The ?rst product is 
of the the messages [71.1],-v(,3), each raised to the c(i). 
Thus a particular value of i acts as the ?rst subscript of 
the message and the second subscript is taken as the j’th 
component of the set v(i). Similarly, the second product 
is of the messages [72.1],-,.(,~1), each raised to the d(i). 
Box 705 depicts ?rst the testing by P of each message 

[74]; received from B. Consider the j’th such message. 
The left side is the message raised to the dc power. The 
right is the product of two factors, the ?rst of which is 
qjraised to the [71.3](j). The second factor is the prod 
uct over all i of two factors. The ?rst of these is message 
[71.1] with ?rst subscript i and second subscript the j’th 
element in the set [72],, the entire quantity raised to the 
do over c(i) power. The second, being similar to the 
?rst, .is message [71.2] with ?rst subscript i and second 
subscript message [72] subscripted by i and then by j, 
the whole quantity raised to the do over d(i) power. 

Next, again for each value of j, p’(]') is computed as 
message [74] received with two factors multiplied in 
and a product over i divided out. The ?rst of these 












