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Abstract. We introduce cMix, a new approach to anonymous communications.
Through a precomputation, the core cMix protocol eliminates all expensive real-
time public-key operations—at the senders, recipients and mixnodes—thereby
decreasing real-time cryptographic latency and lowering computational costs for
clients. The core real-time phase performs only a few fast modular multiplica-
tions.
In these times of surveillance and extensive profiling there is a great need for an
anonymous communication system that resists global attackers. One widely rec-
ognized solution to the challenge of traffic analysis is a mixnet, which anonymizes
a batch of messages by sending the batch through a fixed cascade of mixnodes.
Mixnets can offer excellent privacy guarantees, including unlinkability of sender
and receiver, and resistance to many traffic-analysis attacks that undermine many
other approaches including onion routing. Existing mixnet designs, however, suf-
fer from high latency in part because of the need for real-time public-key opera-
tions. Precomputation greatly improves the real-time performance of cMix, while
its fixed cascade of mixnodes yields the strong anonymity guarantees of mixnets.
cMix is unique in not requiring any real-time public-key operations by users.
Consequently, cMix is the first mixing suitable for low latency chat for light-
weight devices.
Our presentation includes a specification of cMix, security arguments, anonymity
analysis, and a performance comparison with selected other approaches. We also
give benchmarks from our prototype.

1 Introduction

Digital messaging has become a significant form of human communication, yet cur-
rently such systems do not provide basic protections of untraceability and unlinkabil-
ity of messages. These protections are fundamental to freedom of inquiry, to freedom
of expression, and increasingly to online privacy. Grave threats to privacy exist from
global adversaries who construct traffic-analysis graphs detailing who communicates
with whom.

We introduce cMix, a new approach to anonymous communications. cMix is a
new variant of fixed-cascade mixing networks (mixnets). cMix uses a precomputa-
tion phase to avoid computationally intensive public-key cryptographic operations in



its core real-time protocol. Senders/clients participate only in the real-time phase. Thus,
senders never perform any public-key operations. cMix has drastically lower real-time
cryptographic latency than do all other mixnets. Through its use of precomputation,
and through its novel key management, cMix is markedly different from all previous
mixnets. Due to its lack of public-key operations in its core real-time phase, it is very
well suited for applications running on light-weight clients, including chat messaging
systems running on smartphones, and for applications on low-power devices .

To provide anonymity online, an alternative approach to mixnets is onion routing,
such as implemented in the widely used system TOR [49]. Onion-routing systems, how-
ever, have limitations on the level of anonymity achievable: most significantly, because
they route different sessions of messages along different paths and they do not perform
random permutations of messages, they are vulnerable to a variety of traffic-analysis
attacks—for example [13, 45], as well as intersection attacks [7, 14, 15].

By contrast, mixnets hold fundamentally greater promise to achieve higher levels
of anonymity than can onion-routing systems because mixnets are resilient to traffic-
analysis attacks. Specifically, since all mixnet messages travel through the same fixed
cascade of mixnodes, observing the communication paths of messages within a mixnet
is not useful to the adversary. Also, mixnets can process larger batches of messages than
can onion-routing systems, which is important because the batch size is the size of the
anonymity set. Using a fixed cascade achieves resilence against intersection attacks [7].
The main disadvantage of current mixnets is their performance, which is throttled by
their use of real-time public-key cryptographic operations, which are much slower than
symmetric-key operations.

cMix is a practical solution to the cryptographic latency problem. It also provides
resistance to traffic analysis and intersection attacks, as do other fixed-route mixnet
designs. cMix scales linearly in number of users. Our prototype implementation on
Android clients demonstrates the practicality of cMix.

The main novel and significant contribution of cMix is that, by using precomputa-
tion, cMix eliminates all expensive real-time public-key operations by sender, receiver,
and mixnodes in its core protocol. In cMix, the clients never perform any public-key op-
erations when sending messages. By splitting the computational load over a computa-
tionally intensive precomputation phase and a fast real-time phase, cMix’s approach can
also increase throughput, when demand is non-uniform. No other mixnet has achieved
these performance characteristics. Thus, cMix greatly improves real-time performance
(especially latency) over all existing traditional mixnets and all re-encryption mixnets,
while enjoying their strong anonymity properties.

Our main contributions are the design, preliminary analysis, and prototype im-
plementation of cMix, a new mixnet variant that, through precomputation, achieves
lower real-time computational latency than do all existing mixnets (traditional and re-
encryption), while still benefiting from the strong anonymity properties of mixnets over
onion-routing systems.

In the rest of this paper we review related work, provide an overview of cMix, de-
scribe the core cMix protocol, explain some protocol enhancements, provide security
arguments, compare cMix’s performance with that of other mixnets, present bench-
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marks from our prototype implementation, discuss several issues raised by cMix, and
present our conclusions.

2 Related Work

We briefly review selected background and related work on mixnets, onion routing, and
precomputation for mixnets.
Mix Networks. In 1981, Chaum [11] introduced the concept of mixnets (often re-
ferred to as decryption mixnets) and gave basic cryptographic protocols whereby mes-
sages from a set of users are relayed by a sequence of trusted intermediaries, called
mixnodes or mixes. A mixnode is simply a message relay (or proxy) that accepts a batch
of encrypted messages, decrypts and randomly permutes them, and sends them on their
way forward. The sender in a decryption mixnet must perform a number of public-key
operations equal to the number of mixnodes. The length of the encrypted message is
proportional to this number, and the length of the plaintext message is restricted for
performance reasons.

Hybrid mixnets allow plaintext messages to have arbitrary length, by combining
asymmetric and symmetric cryptography. First proposed in 1985 by Pfitzmann and
Waidner [38], hybrid mixnets share a session key in the first message, and then use
a stream cipher to encrypt further messages. Various proposals based on block ciphers
followed [27,34]. The recent system called Riffle [32] provides both sender and receiver
anonymity by using verifiable shuffles and private information retrieval. Periodocially,
a client and all servers perform verifiable shuffles to exchange session keys, which are
then used for several rounds in a manner similar to that performed by other hybrid
networks.

In 1994, Park et al. [37] introduced re-encryption mixnets. Taking advantage of ho-
momorphic properties of El-Gamal encryption, each mixnode re-encrypts the incoming
message instead of decrypting it as in the original mixnet. Doing so reduces and fixes
the size of the ciphertext message traveling through the mixnet. Universal re-encryption
mixnets [24] do not require mixnodes to know public keys for re-encryption. Because
the sender encrypts each message using the public key of the receiver, only the receiver
is able to read the plaintext. Consequently, unlike other mixnets, universal re-encryption
mixnets provide sender anonymity only against external observers, and not against mes-
sage recipients.

Precomputation mixnets introduce a precomputation phase to decrease latency dur-
ing message delivery. Jakobsson [26] introduced precompution to reduce the cost of
node operations in re-encryption mixnets, though client costs remain the same. Adida
and Wikström [1] considered an offline/online approach to mixing. Their protocol still
requires several public-key operations in the online phase, and senders have to per-
form public-key operations. A notable distinction of the cMix precomputation mixnet
is its shifting of all public-key operations in its core protocol to the precomputation
phase. Moreover, only the mixnodes perform these public-key operations; no sender is
involved.
Onion Routing. Higher latency of traditional mixnets can be unsatisfactory for sev-
eral communication scenarios, such as web search or instant messaging. Over the past
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several years, a significant number of low-latency anonymity networks have been pro-
posed [2, 3, 10, 12, 21, 29, 30, 35, 43], and some have been extensively employed in
practice [16, 49].

Common to many of them is onion routing [22,36], a technique whereby a message
is wrapped in multiple layers of encryption, forming an onion. A common realization
of an onion-routing system is to arrange a collection of onion routers (abbreviated ORs,
also called hops or nodes) that relay traffic for users of the system. Users then randomly
choose a path with few edges through the network of ORs and construct a circuit—a
sequence of nodes that will route traffic. After the OR circuit is constructed, each of the
nodes in the circuit shares a symmetric key with the anonymous user, which key is used
to encrypt the layers of future onions. Upon receiving an onion, each node decrypts one
of the layers, and forwards the message to the next node. Onion routing as it typically
exists can be seen as a form of three-node mixing.

Low-latency anonymous communication networks based on onion routing [19, 28,
33, 47], such as TOR [49], are susceptible to a variety of traffic-analysis attacks. By
contrast, mixnet methodology ensures that the anonymity set of a user remains the same
through the communication route and makes our protocol resistant to these network-
level attacks.

There are similarities between our precomputation phase, which uses public-key op-
erations, and the circuit-construction phase of onion routing. Similarly, there are sim-
ilarities between our real-time phase, which uses symmetric-key operations, and the
onion wrapping and unwrapping phases.

Unlike onion routing, however, our precomputation phase requires no participation
from the senders. During enrollment, each of our senders establishes a separate shared
secret with each mixnode, but this key establishment is performed infrequently. Fur-
thermore, in contrast with onion routing, our senders do not perform anonymous key
agreement [3,16,21,30] using a telescoping approach or layered public-key encryption;
they can establish these keys using a Diffie-Hellman key exchange. These differences
result in a significant reduction in the computation that the users need to perform and
make our system more attractive to energy-constrained devices such as smartphones.

3 System Overview

Before defining cMix’s core protocol, we first explain our architecture and communi-
cation model, adversarial model, and security goals.

3.1 Architecture and Communication Model

cMix is a new mixnet protocol that provides anonymous communication for its users
(senders and receivers). The main goal is to ensure unlinkability of messages entering
and leaving the system, though it is known which users are active at any given moment.

cMix has n mixnodes that compose a fixed cascade: all nodes are organized in a
fixed order from the first node to the last. Within the cMix system this order can be
systematically changed and rotated, without affecting users in any way. Any message
sent by a user is forwarded through all n servers. As with any mixnet, cMix collects
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a certain number of messages in a batch before processing them. Section 10 discusses
our strategy for assembling batches, though details may depend on the application.

To become a cMix user, one must first establish for each mixnode a shared key.
Section 4.2 provides more details on how these keys can be established. Round keys
derived from the shared keys are used in each round of communication. A round begins
with the start of batch processing.

For each round, β messages are collected and randomly ordered. Each message
must have the same length, and all messages in a batch are processed simultaneously.
The other messages are not accepted and are sent in a subsequent round. To process
messages quickly in real time, cMix performs precomputations that do not involve any
user. The precomputations are performed in a separate phase during which cMix exe-
cutes all public-key encryptions, enabling the real-time computations to be carried using
only fast multiplications.

3.2 Adversarial Model

We assume authenticated communication channels between all mixnodes. Thus, an ad-
versary can eavesdrop, forward, and delete messages between mixnodes, but not mod-
ify, replay, or inject new ones, without detection. For any communication not among
mixnodes, we assume the adversary can eavesdrop, modify, or inject messages at any
point of the network.

An adversary can also compromise users; however, we assume that at least two
users are honest. Mixnodes can also be compromised, but at least one of them needs
to be honest for the system to be secure. We assume compromised mixnodes to be
malicious but cautious: they aim not to get caught violating the protocol.

The goal of the adversary is to compromise the anonymity of the communication
initiator, or to link inputs and outputs of the system. As with other mixnets [1, 11, 24,
26, 32, 37, 38], we do not consider adversaries whose sole purpose is to launch denial-
of-service (DoS) attacks.

We envision a deployment model in which there are dedicated trusted data centers
serving as the mixnodes (perhaps competitively awarded). As such, they are incen-
tivized not to be exspelled. By contrast, some mixnets allow the mixnodes to enter and
leave with low cost.

An implication of our deployment model is that it is sufficient to be able to detect
a cheating node with sufficient probability at some point. By contrast, in more flexible
deployment models, the nodes should prove more stringently that they have computed
correctly before the output is opened. cMix does require that the exit node commit to
its output prior to being able to read the system output, which protects against certain
adaptive attacks.

3.3 Security Goals

cMix aims to satisfy each of the following two security properties:

– Anonymity: A protocol provides anonymity if the adversary cannot map any in-
put message to the corresponding output message, with a probability significantly
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better than that of random guessing, even if the adversary compromises all but two
users and all but one mixnode.

– Integrity: A protocol provides integrity if at the end of every run involving β honest
users:
1. either, the β messages from the honest users are delivered unaltered to the

intended recipients,
2. or, a malicious mixnode is detected with a non-negligible probability and no

honest party is proven malicious.

4 The Core Protocol

We now present the core cMix protocol, beginning with some preliminary notations and
concepts, followed by a detailed specification.

4.1 Preliminaries

We introduce the primitives and notations used to describe the protocol. There are n
mixnodes that process β messages per batch. For simplicity we assume here that the
system already knows for each sender what slot to use out of the β slots. When im-
plementing the system this assignment can, for example, be achieved by including the
sender’s identity (possibly a pseudonym) when sending a message to the system.

All computations are performed in a prime-order cyclic group G satisfying the deci-
sion Diffie-Hellman (DDH) assumption. The order of the group is p, and g is a generator
for this group. Let G∗ be the set of non-identity elements of G.

cMix uses a multi-party group-homomorphic cryptographic system. We make use
of a system based on ElGamal, described by Benaloh [4], though any such system could
be used. This system works as follows:

– di ∈ Z∗p: the secret share for mixnode i of the secret key d.
– e: the public key of the system, based on the mixnode shares of the secret key:
e =

∏
i g
di .

– Ee(m) = (gx,m · ex), x ∈R Z∗p: encryption of message m under the system’s
public key e. We call gx the random component and m · ex the message component
of the ciphertext. When applying encryption on a vector of values, each value in the
vector is encrypted individually—each with a fresh random value—and the result
is a vector of ciphertexts.

– Ddi(gx) = (gx)−di : the decryption share for mixnode i computed from the random
component of a ciphertext using the mixnode’s share of the secret key. As with
encryption, applying this function on a vector of random values results in a vector
of corresponding decryption shares.

To decrypt a ciphertext (gx,m ·ex), all parties need to cooperate because the decryption
shares for all mixnodes are required to retrieve the original message:

m · ex ·∏n
i=1Ddi(gx) = m · (∏n

i=1 g
di)x ·∏n

i=1(g
x)−di = m .
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The cMix protocol uses the following values:

– ri,a, si,a ∈ G∗: random values (freshly generated for each round) of mixnode i for
slot a. Thus, ri = (ri,1, ri,2, . . . , ri,β) is a vector of random values for the β slots
in the message map at mixnode i. Similarly, si is also a vector of random values for
mixnode i.

– πi: a random permutation of the β slots used by mixnode i. The inverse of the
permutation is denoted by π−1i .

– ki,j ∈ G∗: a group element shared between mixnode i and the sending user for slot
j. These values are used as keys to blind messages.

– Mj ∈ G∗: the message sent by user j. Like other values in the system, these values
are group elements. They can be easily converted from, for example, an ASCII-
encoded string. The group size determines the length of an individual message that
can be sent.

For readability we introduce the following shorthand notations:

– Ri: the product of all local random r values through mixnode i; i.e., Ri =
∏i
j=1 rj .

– Si: the product and permutation of all local random s values:

Si =

{
s1 i = 1

πi(Si−1)× si 1 < i ≤ n.
– ΠΠΠi(a): the permutation performed by cMix through mixnode i, i.e., the composi-

tion of all individual permutations:

ΠΠΠi(a) =

{
π1(a) i = 1

πi(ΠΠΠi−1(a)) 1 < i ≤ n.
– ki and k−1i : the vector of keys shared between mixnode i and the users for all
β slots and their inverses, respectively; ki = (ki,1, ki,2, . . . , ki,β) and k−1i =
(k−1i,1 , k

−1
i,2 , . . . , k

−1
i,β ).

– Kj : the product of all shared keys of the sending user for slot j: Kj =
∏n
i=1 ki,j .

– K is a vector of products of shared keys for the β slots; K = (K1,K2, . . . ,Kβ).

4.2 Protocol Description

We now present the core protocol. In this explanation we focus on simplicity and clar-
ity; see Section 5 for a discussion of possible security issues and enhancements. We
separately discuss each of the three protocol phases: setup, precomputation, and real
time.

Setup In the setup phase, the mixnodes establish their secret shares di and the shared
public key e, which are used for the multi-party homomorphic encryption system.

The users also establish their keys ki,j , which they share with all mixnodes. This
can be done using any (offline) key distribution method. One way to derive these keys is
using a Diffie-Hellman key exchange. The resulting key can be used as a seed to derive
unique values for ki,j for every session. Depending on the chosen key distribution pro-
tocol, this would be the only time a user is possibly required to perform an asymmetric
cryptographic operation. The key exchange must be performed once for each user, and
this exchange can be carried during the user’s enrollment into the system.
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Node 1 Node 2 Node n Node 1 Node 2 Node n
Ee(r1,1)

Ee(r1,2)

Ee(r1,β)

Ee(r1,1 · r2,1)

Ee(r1,2 · r2,2)

Ee(r1,β · r2,β)

Ee(
∏n
i=1 ri,1)

Ee(
∏n
i=1 ri,2)

Ee(
∏n
i=1 ri,β)

Ee(
∏n
i=1(ri,1) · s1,4)

Ee(
∏n
i=1(ri,2) · s1,3)

Ee(
∏n
i=1(ri,β) · s1,1)

Ee(
∏n
i=1(ri,1) · s1,4 · s2,3)

Ee(
∏n
i=1(ri,2) · s1,3 · s2,1)

Ee(
∏n
i=1(ri,β) · s1,1 · s2,2)

Fig. 1. A schematic example of the first two steps of the precomputation phase, which result in
the values Ee(ΠΠΠn(Rn)× Sn).

Node 1 Node 2 Node n Node 1 Node 2 Node n
m1 ·

∏n
i=1(ki,1)

m2 ·
∏n
i=1(ki,2)

mβ ·∏n
i=1(ki,β)

m1 ·
∏n
i=2(ki,1) · r1,1

m2 ·
∏n
i=2(ki,2) · r1,2

mβ ·∏n
i=2(ki,β) · r1,β

m1 ·
∏n
i=1(ri,1)

m2 ·
∏n
i=1(ri,2)

mβ ·∏n
i=1(ri,β)

m1 ·
∏n
i=1(ri,1) · s1,4

m2 ·
∏n
i=1(ri,2) · s1,3

mβ ·∏n
i=1(ri,β) · s1,1

Fig. 2. A schematic example of the first two steps of the real-time phase, which result in the values
ΠΠΠn(M× Rn)× Sn.

Precomputation The precomputation phase is performed only by the mixnodes, with-
out any involvement from the users. It is performed once for each real-time phase. The
mixnodes establish shared values to circumvent the need for public-key operations dur-
ing the real-time phase. The precomputation phase comprises three different steps given
below. The goal of the precomputation phase is to compute the values ΠΠΠn(Rn) × Sn,
which are used in the real-time phase. Figure 1 shows a schematic example of the first
two steps of the precomputation phase.

Step 1 - Preprocessing. The mixnodes start by generating fresh r, s, πππ values. Then
they collectively compute the product of all of their individual r values under encryption
using the public key e of the system, which was computed during the setup phase. This
computation takes place by each mixnode i sending the following message to the next
mixnode:

Ee(Ri) =
{
Ee(r1) i = 1

Ee(Ri−1)× Ee(ri) 1 < i ≤ n.
Each mixnode encrypts its own r values and uses the homomorphic property of the
encryption system to compute the multiplication of this ciphertext with the input it
receives from the previous mixnode. Eventually, the last mixnode sends the final values
Ee(Rn) to the first mixnode as input for the next step.
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Step 2 - Mixing. In the second step, the mixnodes together mix the values and compute
the results ΠΠΠn(Rn) × Sn, under encryption. The mixnodes perform this mixing by
having each mixnode i send the following message to the next mixnode:

Ee(ΠΠΠi(Rn)× Si) =

{
π1(Ee(Rn))× Ee(s1) i = 1

πi(Ee(ΠΠΠi−1(Rn)× Si−1))× Ee(si) 1 < i ≤ n.
As with the first step, the last mixnode sends the final encrypted values Ee(ΠΠΠn(Rn) ×
Sn) to the first mixnode. These final values now must be decrypted together by all
mixnodes, which happens in the last step of the precomputation.

Step 3 - Postprocessing. To complete the precomputation, the mixnodes decrypt the
precomputed values. Each mixnode i computes its decryption shares Ddi(x), where
(x, c) = Ee(ΠΠΠn(Rn)×Sn)). The message parts c are multiplied with all the decryption
shares to retrieve the plaintext values ΠΠΠn(Rn) × Sn. This computation can be carried
out either using another pass through the network (in which every mixnode multiplies
in its own decryption share), or by having all mixnodes send their encryption shares to
the last mixnode, which can then perform the multiplication. The last mixnode to be
used in the real-time phase stores the decrypted precomputed values.

Real Time For the real-time phase, each user constructs its input by taking its message
m and multiplying it with its combined shared key k to compute the blinded message
m×k. This blinded message is then sent to the mixnet. One option would be to send the
blinded messages to the first mixnode. Once the first mixnode receives enough blinded
messages, it combines those messages to yield the vector M × K. As in the precom-
putation phase, the real-time phase can again be split into three steps. Figure 2 gives a
schematic example of the first two steps.

Step 1 - Preprocessing. During the preprocessing step, the mixnodes take out the keys
k they share with the users and add in their r values to blind the original messages.
This computation is performed by each mixnode i sending the following to the next
mixnode:

M×K× (
∏i
j=1 k−1j × rj) = M×K× (

∏i−1
j=1 k−1j × rj)× k−1i × ri .

The last mixnode sends the final values M×Rn = M×K×∏n
j=1

(
k−1i × ri

)
, which are

the blinded versions of the original messages, to the first mixnode as input for the next
step. Now the user-specific keys k are taken out and replaced by the user-independent
values r.

Step 2 - Mixing. The second step performs the mixing to hide the association between
sender and receiver. The s values are added in to hide which input message corresponds
to which output message. Each mixnode i (except the last mixnode) sends the following
message to the next mixnode:

ΠΠΠi(M× Rn)× Si =

{
π1(M× Rn)× s1 i = 1

πi(ΠΠΠi−1(M× Rn)× Si−1)× si 1 < i < n.

Finally, the last mixnode computes:
ΠΠΠn(M× Rn)× Sn = πn(ΠΠΠn−1(M× Rn)× Sn−1)× sn .

Now every mixnode has performed its mixing, destroying the associations between
senders and receivers.
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Step 3 - Postprocessing. The last mixnode can perform the final step. This mixnode
retrieves the locally stored precomputed valuesΠΠΠn(Rn)×Sn. To retrieve the permuted
messages it now needs only to perform the following computation, using the result from
the previous mixing step:

ΠΠΠn(M) =ΠΠΠn(M× Rn)× Sn × (ΠΠΠn(Rn)× Sn)−1 .
How the messages are then delivered to the recipients depends on the application and
is independent from cMix. This step concludes the real-time phase, in which no public-
key operations are performed.

5 Protocol Integrity

The cryptographic construction presented in Section 4 expects the mixnodes and users
to be honest but curious. As for most mixnet protocols [11,27,34,37], cMix requires ad-
ditional measures to ensure that mixnodes cannot tamper with the messages nor with the
flow without detection. In this section, we augment the protocol to protect its anonymity
and integrity against malicious attacks by users and by compromised mixnodes, which
we shall call “adversarial mixnodes.” The overall strategy relies on the assumption that
compromised mixnodes are malicious but cautious.

5.1 Integrity of Values and Messages

To enable honest mixnodes to verifiably detect any malicious mixnodes that employ in-
correct values or permutations in the precomputation or real-time phase, cMix augments
communications with proofs. To this end, all messages exchanged between mixnodes
are signed using a digital signature system with existential unforgeability under an adap-
tive chosen-message attack [23]. In addition, during precomputation, each mixnode
commits to the permutation πj it applies to the incoming slot j using a perfectly hiding
commitment (Commit) scheme [25] and signs that commitment. Each node broadcasts
its signed commitment using a reliable broadcast (Broadcast) protocol [18] [46]. Do-
ing so makes it possible to reconstruct and verify all individual values ri,j , si,j and πi,j
that mixnode j applies to slot i.

In the real-time phase, the users become involved, making the process more com-
plicated because they do not perform any public-key operations during the real-time
phase. The values that we need to verify that depend on the users are the ki,j values
(shared between a mixnode i and the user in slot j), and the mj ·Kj values (the blinded
message that a user sends in slot j).

Because the k values are shared between a mixnode and a user, we need them to
agree on the commitments to these values. If we detect an anomaly involving the k
values, and a mixnode and user disagree on the value used, the commitment needs to
provide proof of who misbehaved.

For this task, the following procedure can be followed in case the k values are de-
rived from a seed that is agreed upon by a mixnode and user during the setup phase.
After establishing this seed, the mixnode will compute a commitment of the seed and
provide this commitment to the user. The mixnode generates the commitment in a
way that enables the user to reveal the commitment and prove to other parties that
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the mixnode generated the commitment. The user must verify the commitment during
the setup phase. This verification requires an additional public-key operation, though it
will be performed only once provided the protocol runs without any disturbance.

Message Integrity at Entry Messages at entry to cMix need to arrive at cMix and pass
through the non-permuted part of the protocol without any undetected modification.
Providing integrity of messages at this point is a challenge if one wishes to keep clients
free from using any asymmetric cryptography during the real-time phase. We propose
a construction where message authentication codes (MAC s) are generated over the
input message to the cMix system. A shared-key MAC is sufficient here because the
communicants (sender, mixnode) do not need to convince any third party.

To accomplish this goal, we introduce additional key values li,j , shared between
mixnode i and the user for slot j, established and committed to in a similar way as for
the k values. When the user sends the blinded message mj ·Kj to the system, the user
also sends the following messages:

hj = Hash(mj ·Kj) and (MAC l1,j (hj), . . . ,MAC ln,j (hj)) .
During the real-time phase, the first mixnode starts by checking its corresponding

MAC value in the list. If it is incorrect, the mixnode informs the other mixnodes and
does not forward the computed value for this slot. If the MAC value is correct, it for-
wards the h values and the MAC values for the other mixnodes, together with its basic
computed values.

Each subsequent mixnode follows the same procedure. At the end of the first step
of the real-time phase, all mixnodes have checked their MAC values on the received h
values, or the value is not processed any further.

5.2 Message Tagging Detection

A message-tagging attack is an attack where the adversary can mark a message at some
point during the process, such that it is recognizable when it is output, compromising
unlinkability between the inputs and outputs [41]. To perform a tagging attack unno-
ticed, the tag should also be removed before the messages are output. Tagging attacks
are a threat to all mixnets that use some form of malleable encryption, such as homo-
morphic encryption or group multiplications, where valid messages can be recognized
when output by the mixnet. For example, Pfitzmann [40] presents such an attack on
re-encryption mixnets.

A simple example of a tagging attack is the following: The last mixnode multiplies
the blinded message in one of the slots j with an additional factor t in the first step
of the real-time phase. Now the blinded message in slot j will be mj ·

∏n
i=1 ri,j · t at

the end of the first step, whereas the values in the other slots stay the same. When the
last mixnode performs Step 3, it will see the final messages before it outputs them. If
the messages are recognizable as valid outputs, it will observe that one of the messages
does not seem to be valid. If this invalid message becomes valid when multiplied with
t−1, this message is likely the tagged one. The mixnode can now link the message,
and possibly the recipient, to the sender. The mixnode can remove the tag and output
the original messages, making it unobservable to the users and other mixnodes that a
tagging attack took place.
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Detection. To protect against these kinds of attacks and make them detectable, only
small changes are needed to the protocol:

– Precomputation Phase - Step 3: The mixnodes no longer send out their decryption
shares to retrieve the precomputed values. Instead, they keep their shares secret and
publish only a commitment to them. The last mixnode also publishes a commitment
to the message component of the ciphertext. The commitments can be computed,
for example, using only one signature per mixnode for the decryption shares for all
slots simultaneously. The plaintext results of the precomputation phase are thus no
longer retrieved in that phase itself.

– Real-Time Phase - Step 3: The output of the mixing step ΠΠΠn(M × Rn) × Sn is
published by the last mixnode. Afterwards, all mixnodes release their decryption
sharesDdi(x) and the message component of the ciphertext c. The output messages
are then computed as follows, where (x, c) = Ee(ΠΠΠn(Rn)× Sn):

ΠΠΠn(M× Rn)× Sn × c×∏n
i=1Ddi(x) .

Because the mixnodes committed to all of the values necessary to retrieve the pre-
computed value, they cannot change these values to take out a possible tag anymore.
The output of the mixing step does not reveal anything yet about the messages, because
the r and s values are still included. The precomputed value to take out these values
is retrieved only after the output of the mixing step is made public. Therefore, the last
mixnode would not know from which output slot a possible tag should be removed be-
fore the output of the mixing step is made public. Once the output is made public, the
tag cannot be removed because all computations for the third step are fixed and can be
verified by anyone.

5.3 Sending and Verifying Trap Messages

To ensure the protocol is functioning correctly, we let users send trap messages with
a certain probability, and request to open message paths of these traps. Opening of a
path includes verification of all messages exchanged between mixnodes, the incoming
message from the user, as well as intermediate values and permutations.

Sending Trap Messages and Requesting to Open Them: To send a trap, a user starts
by forming a string x with a round ID, user ID, and a statement that this is the dummy
message. She calculates a MAC of x with every key li,j shared between mixnode i and
the user for slot j. The trap message is then the string together with its MAC values, i.e.,
m = (x,MAC l1,j (x), . . . ,MAC ln,j

(x)) . Note that these MAC values are different
from the MAC values mentioned in Section 5.1, even though we are using the same
keys in both places.

After the round is over, the trap message appears at the output. Each mixnode ver-
ifies the correctness of her associated user ID, round ID, and MAC li,j values. If any
mixnode i detects that any of these values is incorrect, she stops the round. Otherwise,
the mixnode sends an authenticated message to user j notifying that the dummy mes-
sage is received correctly, including an incremented counter of all dummies received
from this user.
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If a user actually sent a dummy message, but she does not receive a notification
message from each mixnode, she initiates the verification procedure. The verification
procedure consists of the following steps:

i) User j sends a request, tagged with MAC values, to open the path with her dummy
message to all mixnodes.

ii) A mixnode can either agree to participate in the path opening, or can dispute the
MAC of the path-opening request.

iii) If mixnode i disputes the MAC intended for her, both the user and mixnode open
their local li,j values to validate the MAC .

iv) If both the user and the mixnode are using the same li,j value, then the MAC li,j ()
values computed by them should be same, and the correctness of the request sent by
the user can be easily validated. If the user has sent an invalid request, the request
is dropped.

v) If the user and the mixnode dispute over the li,j value, then the seed of li,j and
the commitment to that seed (made by the mixnode and verified by the user during
setup) are opened. The user and mixnode each recomputes li,j from the seed. Two
possibilities follow:
a) If the recomputed li,j value is not equal to what the user claims, the path-

opening request is dropped.
b) If the recomputed li,j value is not equal to what the mixnode claims, she must

either agree to participate in the path-opening, or be considered malicious.
vi) Once all the mixnodes agree to participate in the path-opening, they first open the

path of the precomputation phase, and then the real-time phase (both are explained
below).

Path Opening for the Precomputation Phase: For the input slot j that we want to
verify, the mixnodes have to decrypt exchanged messages for this slot and compute
the r values in the non-permuted part. For the permuted part, mixnodes subsequently
reveal the corresponding permutations and decrypt exchanged messages to obtain the s
values. Doing so we can follow the computation through the mixnet and verify whether
the precomputed value that was output was correctly computed.

To check, for example, whether mixnode i performed its computation correctly,
that mixnode needs to present the signature from the previous mixnode on the values
it received. The next mixnode will also have to present the signature it received from
mixnode i to obtain proof what values mixnode i output. Once all information about
the input, output, and values used in the expected computation are known, due to the
signatures, commitments, and threshold decryption, it can be verified whether mixnode
i performed the computation as expected or not.

Path Opening for the Real-Time Phase: Malicious mixnodes can also employ in-
correct messages, values, and permutations in the real-time phase. We wish to make
the mixnodes accountable for their behavior. One challenge is that malicious users may
try to victimize some honest mixnodes by providing inconsistent inputs and later deny
having done so.
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First, the mixing step is verified. This check is performed in a similar fashion as
for the precomputation phase. For the preprocessing step, a comparable approach is
followed. To verify whether the correct input from the user to the system is used, all the
keys l for the MAC values for the suspicious slot are output. The purpose is to detect if
a mixnode or user changed the input. Because the values were processed in the mixing
step, during the first step of the real-time phase, all mixnodes accepted the MAC values
and thus should be able to provide a correct key. The mixnodes also reveal their r and
k values for the corresponding slot, and the mixnodes check whether they performed
their computations correctly. Although the mixnodes committed to the r values, they
have not committed to individual k values. Therefore the sender must be involved in
this process. The sender will also release all the k values it used for this message.

If a k value released by the sender does not match the one released by the corre-
sponding mixnode, either the mixnode or the sender is misbehaving. The sender might
do this to blame a mixnode of misbehaving to cause it to be removed from the sys-
tem. This dispute needs to be resolved by having the user reveal the commitment by
the mixnode on the shared keys. Doing so might also reveal k values used in previous
sessions, but these values are only one of the components of K and therefore do not
leak the original messages. There are two possibilities: either the user was malicious,
in which case we do not care about his or her previous messages, or the mixnode was
malicious, in which case we consider the k values to be compromised already. This
procedure will reveal who acted maliciously and modified the output message.

6 Integrity Analysis

We define the integrity property as following:

Definition 1. A protocol maintains integrity if, at the end of each run involving β honest
users:

1. either, all the β messages are delivered unaltered to the intended recipients.
2. or, a malicious mixnode is detected with a non-negligible probability, and no honest

party is proven malicious.

If all the parties involved in the cMix protocol behave correctly, the messages are
delivered unaltered to the intended recipients. We shall argue informally that, if any of
the messages are altered by any node, (a) no honest party can be proven malicious, and
(b) at least one malicious mixnode is detected with non-negligible probability.
No honest party is proven malicious. An honest mixnode can be targeted by some
malicious colluding users or mixnodes that provide inconsistent inputs. If the output is
corrupted by n − 1 colluding mixnodes that provide incorrect decryption shares, then
validating the commitments will reveal this fact. Because the commitment scheme is
secure, malicious mixnodes cannot publish incorrect commitments without detection.

If the previous mixnode has provided inconsistent input, then the current mixnode
can prove its correctness by providing the input signed by the previous mixnode, since
all messages exchanged between mixnodes are digitally signed. If a mixnode falsely
claims that the previous mixnode has provided incorrect input, it will have to provide
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the input signed by the previous node as proof. In both cases, the adversary will be
successful only if the digital signature scheme is not secure.

If a user has provided inconsistent input and claimed falsely that the mixnode is
malicious, then the mixnode can prove its innocence using the MAC value received
from the mixnode. If the user and the mixnodes show disagreement about the key used
for computing the MAC value, the seed for generating the key is revealed. In the setup
phase, the mixnode generates a commitment to the seed, and the user verifies the com-
mitment. Thus, the user can successfully claim a different seed for that commitment
only when the commitment scheme is not secure.

We need to note here that user j1 can not modify the message for slot j2, only a
mixnode can do that. So, a user can not modify the message of other users to target an
honest mixnode.
At least one malicious mixnode is detected with non-negligible probability. We
assume our adversary is malicious but cautious. So, if there is even a slight chance
of a malicious node being detected and thrown out of the system, it will refrain from
engaging in any such mischief. We now show that if an adversary behaves maliciously,
there is a significant probability that it will be caught and will lose one mixnode.

We need to note here that if a message is modified, it is modified by one or more of
the mixnodes, a user can not modify messages sent by other users.

Let p denote the probability with which a user will send a trap message. In each
round there are a total of β messages. The expected number of trap messages in a batch
is α = pβ.

We want to calculate the probability that a mixnode will be detected even if it mod-
ifies only one path. When paths are opened, the probability that the corrupted path will
be chosen among one of the α trap paths is

(
β−1
α−1
)
/
(
β
α

)
= α/β = p.

Thus, in case of malicious behavior, at least one of the adversarial nodes will be
caught with probability p. If p = 1/2, we can use 2β slots to ensure an anonymity set
of β, while having a significant probability to detect a malicious node.

7 Anonymity Analysis

We analyze the anonymity of the cMix protocol. First, we state a precise definition
for a desired anonymity property. Second, we sketch a proof that cMix satisfies this
definition. Third, we explain why cMix resists well-known attacks on mixnets.

7.1 Formal Anonymity Analysis

Motivated by [9, 48], we define our desired anonymity property in the form of a game
between an adversary A and a challenger C, where the adversary A is a probabilistic
polynomial time (PPT) Turing machine. Upon request, C runs the protocol and returns
the outputs to A. For ease of exposition, we fix the number of users to β and assume
each user sends a message during every round. Our static adversary A is allowed to
compromise all but two users, as well as all but one mixnode before execution begins.
The challenger C executes the protocol on behalf of honest nodes and users, while A
acts on behalf of the compromised users and nodes. The adversary can eavesdrop on all
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messages among the mixnodes, but it cannot modify them; thus, C also sends a copy of
every communication between two honest parties along with its source and destination
to A. We denote the output of the adversary from this game as 〈A|C〉.

The anonymity game works as follows:

Setup phase: The challenger C runs the setup for all honest nodes, and provides all
public information to the adversary A.

Query phase: As many times as A requests, C takes input messages in the form of
(sender, message)-pairs for all the β slots from A, and runs the cMix protocol with
those inputs.

Challenge phase: A chooses two honest users S0 and S1 and two distinct messages
m′0 and m′1. A also chooses messages for all other honest users as m, where
m /∈ {m′0,m′1}, and sends this challenge to C. The challenger C tosses a uni-
form random coin to obtain a bit b, and assigns m0 = m′b and m1 = m′1−b, the
messages corresponding to users S0 and S1, respectively. The challenger C then
runs the protocol with these input messages, and gives the output message set to
the adversary.

Query phase: After the challenge run, as many times as A requests, C takes message
inputs from A and runs the cMix protocol again.

Output phase: Finally, the adversary outputs b as its guess for b.

The adversary’s advantage in the anonymity game is :
Pr[0 = 〈A|C〉 | b = 0]− Pr[1 = 〈A|C〉 | b = 0].

We now define the anonymity property as follows:

Definition 2. A protocol maintains anonymity if the advantage of the adversary in the
anonymity game is negligible.

Theorem 1 states that the cMix protocol satisfies Definition 2.

Theorem 1. If E is a CPA-secure group-homomorphic encryption scheme, and Com-
mit is a perfectly-hiding non-interactive commitment scheme, and if the protocol main-
tains integrity, then cMix offers anonymity as defined in Definition 2 in the random
oracle model.

Proof (Sketch). We prove the security of cMix by reduction from the security of the
encryption system E . In our argument, we use an equivalent modified version of the
standard encryption game used to define the security of E : on a given challenge message
pair (m0,m1), the challenger CE of the encryption system returns a ciphertext pair
(Epk(mb), Epk(m1−b)) instead of just one ciphertext Epk(mb).5

Without loss of generality, we assume thatA can compromise β−2 users and n−1
nodes. Let S0 and S1 be any two honest users and let i be the only honest mixnode in
the system.

During the setup phase, the challenger C initiates the CPA game with the encryption
challenger CE , and ensures that the encyption public key in cMix is the same as the

5 By defining an appropriate hybrid in the simulation, this modified game can be easily shown
equivalent to the standard CPA-security encryption game.
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public key in the CPA-security game with CE . In the query phase, C can easily simulate
the honest nodes, including the decryption shares for those nodes. It can do so because it
manages and checks the hashing (random) oracle queries made by the adversary for its
commitments to messages as well as permutations, and since it can open the committed
decryption shares (obtained using the perfectly-hiding commitment scheme) with its
own choice of values.

In the challenge phase, C assigns the corresponding messages m0 = m′
b̂

and m1 =

m′
1−b̂, as determined by a random bit b̂. In addition, it chooses s values (say si,0 and

si,1) for the slots of S0 and S1 at honest node i such that m0/m1 = si,0/si,1. The
challenger C then runs the challenge phase with the CPA-security challenger CE with
si,0 and si,1 as two challenge messages. CE returns with a ciphertext pair Epk(si,b) and
Epk(si,1−b). The anonymity-game challenger C uses this response pair in the precom-
putation phase for node i and slots S0 and S1. This way the challenger C embeds its
decryption challenge from the CPA-security game into an unknown permutation for an
honest player in the anonymity game of cMix.

In the real-time phase of cMix, the challenger C runs the protocol in a standard
manner, except at the mixing step for node i. Here, we use si,1 and si,0 for slots S0

and S1, resepctively, such that m0si,1 = m1si,0. Doing so allows C to open any of two
honest real-time messages to any of the m0 and m1 values.

Finally, during the postprocessing step of the real-time phase, the challenger C
knows all permutations except for two slots associated with m0 and m1 (i.e., except
for m′

b̂
and m′

1−b̂). As a result, it can open the decryption shares appropriately for all
other messages. Since m0si,1 = m1si,0, the challenger can open m0 and m1 in any
order.

In the end, if the anonymity game adversary A predicts the bit b̂ correctly, the chal-
lenger C knows that its choice of si,1 and si,0 for slots S0 and S1 in the real-time phase
matched the challenge ciphertexts used in the precomputation phase. In this case, it out-
puts b = 1 to the encryption game challenger CE . Otherwise, if the adversary guesses b̂
incorrectly, the challenger C outputs 0 to CE .

As a result, if the cMix protocol does not provide anonymity, we can apply it to
break the CPA-security of the underlying group-homomorphic encryption system, a
contradiction.

7.2 cMix Resists Standard Mixnet Attacks

We explain how cMix resists standard attacks on mixnets. There are several active at-
tacks against fixed-cascade mixnets. The literature can be confusing because there is no
common nomenclature for these attacks, so we define each attack type we discuss.

Many of these attacks are based on adding, deleting, or modifying messages in
the mixnet at the entrance. An adversary can either block incoming messages from
β − 1 users, or replace them from the batch with her own, allowing her to trace a target
message. Such attacks are called n− 1 or flooding attacks [11].

Replay attacks [11] [7] work by retransmitting a message from a previous session.
These attacks can work only if encryption or re-encryption is deterministic. A general-
ization of these attacks is called a blending attack [17] and happens when the adversary
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manipulates messages that are in the same batch that includes the target messages. Din-
geldine et al. [17] discuss a number of countermeasures. Section 5.2 addresses tagging
attacks and our protections against them. Because the K, R, and S values are never
reused, cMix protects against replay attacks (see Section 5).

Contextual attacks [41], sometimes referred as traffic-confirmation attacks [42],
communication pattern attacks [41], and intersection attacks [6], analyze the time when
particular senders and receivers participate in the protocol, their communication pat-
terns, and how many messages they send and receive. Only unobservable [39] systems
protect against this type of attack. These attacks are sometimes included in the follow-
ing category of attacks.

Intersection attacks and statistical disclosure attacks [7,14,15] make use of mixnet
topologies that allow users to choose routes freely for their messages (free mix routes).
In such systems, sets of messages in a batch of a mixnode can be distinguished, for
example, since they come from different mixnodes or have different route lengths. As-
suming that users often use the same routes for their messages, these routes can be
distinguished by analyzing network flow data. Because cMix uses a fixed cascade of
mixnodes [7], cMix is not susceptible to this family of attacks.

Traffic-analysis attacks are targeted at connection-based anonymity systems, as op-
posed to message-based systems. These connection-based systems often do not batch
and permute incoming packets, and they use free mix routes. This approach permits an
adversary to distinguish these paths based on measures such as counting packets [45]
and timing communications [13]. These attacks do not work on cMix because cMix
permutes messages in batches using a fixed cascade of nodes.

Galteland, Mjølsnes, and Olimid [20] propose a tagging attack and an insider attack
against the cMix protocol, as described in the preliminary cMix eprint. But security
mechanisms specified in this preliminary cMix eprint prevent both attacks, as do alter-
native integrity mechanisms (e.g., trap messages) specified in the current cMix paper.
In particular, as presented in the preliminary cMix eprint, cryptographic commitments
enforced by Random Partial Checking (RPC) [31] prevent both attacks. Thus, these
purported “Norwegian Attacks” do not work.

8 Comparison with Other Mixnets

We compare cMix with well-known fixed-cascade mixnet approaches based on perfor-
mace. Specifically, as summarized in Table 1, we compare the performance of the core
cMix protocol with that of each of the following three competing approaches: origi-
nal mixnet and hybrid mixnets, re-encryption mixnet, and re-encryption mixnet with
precomputation.

For each approach, we compare the precomputation and real-time costs, further
compared by number of single-party public-key operations, multi-party public-key op-
erations, and multiplications (each by client and by mixnodes). Note that, when using
ElGamal encryption, the multiplication of two ciphertexts requires two multiplications.

The original mixnet [11] requires each sender to perform n encryptions; each of the
n mixnodes in the cascade performs one decryption per message and β decryptions per
batch. In total, all mixnodes perform n decryptions per message and βn decryptions per
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Precomputation Real time
(ops for all mixnodes) (ops per client; ops for all mixnodes)

PK ops
Multi-party
PK ops Mult PK ops

Multi-party
PK ops Mult

cMix (core) 2nβ β 4n− 2β 0; 0 0; 0 n; 3nβ
Original mix - - - n; nβ 0; 0 0; 0
Re-encryption mix - - - 1; nβ 0; β 0; 2nβ
Re-encryption mix
(precomputation) nβ 0 0 1; 0 0; β 0; 2nβ

Table 1. Performance comparison of the core cMix protocol with three competing mixnet [11,37]
approaches: number of multiplication (Mult) and public-key (PK) operations performed for a
batch of β messages processed by an n-node mixnet. One multi-party public-key operation (ops)
requires all nodes to participate.

batch. Hybrid mixnets [27,34] require the same amount of asymmetric encryptions, but
on a smaller plaintext.

In re-encryption mixnets [37], each client performs one encryption of its message
using the mixnet’s shared public key. Each node re-randomizes every message, instead
of decrypting each one as with original mixnets, resulting in one public-key operation
and one multiplication of ciphertexts per message per node. In addition, the nodes need
to decrypt the output of the mixnet in a multi-party computation.

Re-encryption mixnets can be improved in a straightforward way using precomputa-
tion to perform the public-key operations necessary for the re-randomization, similarly
to cMix’s strategy. As shown in Table 1, however, with regard to real-time computation,
cMix outperforms re-encryption mixnets with precomputation.

Universal re-encryption mixnets perform much more slowly because they require
senders to encrypt messages with public keys of their recipients.

9 Proof of Concept

We implemented a proof-of-concept protoype in Python, including tagging detection as
discussed in Sections 5.2. Towards reducing the communication latency, we have also
introduced a network handler.

Introducing an untrusted network handler reduces latency. In Steps 1 and 3 of the
precomputation and real-time phases, only products of values known by the individual
nodes are computed (see Section 4.2). To compute these products, it is not necessary
to make a full pass through the mixnet. Instead, each node can send its values to an
untrusted third party, which we call the network handler, who can compute the products
and return the results to the mixnet. Doing so reduces latency of the network signifi-
cantly because each node can send its values simultaneously to the handler, instead of
forwarding its local result to the next node sequentially. The network handler does not
learn any secret value, and it computes only values that would anyway become pub-
lic. The network handler, and each of the mixnodes, is a single point of failure. In the
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event of failure, however, because the handler performs only public operations, it can
be easily replaced by another entity—for example, by one of the mixnodes.

Each mixnode includes a keyserver (to establish shared keys with the users) and
a mixnet server (to carry out the precomputations and real-time computations). We
use Ed25519 [5] signatures to implement authenticated channels between mixnodes.
For the precomputation, each mixnode uses parallel processes for the computation of
the encryptions and the decryption shares. In the real-time phase, all operations are
performed in a single thread.

We performed experiments by running the protoype on Amazon Web Services (AWS)
instances, with each node comprising a c3.large with two virtual processors and 3.75 GB
of RAM. For all values, we used a prime-order group of 2048 bits.

On the AWS instances, each 2048-bit ElGamal encryption took approximately 10 mil-
liseconds on average, and the computation of a decryption share took approximately
5 milliseconds. Multiplication of group elements took only a fraction of a millisecond.

For our experiments we performed 100 precomputation and real-time phases for
selected batch sizes up to 1000 with five mixnodes. Table 2 gives observed timings on
the network handler for selected batch sizes using five mixnodes, without any enhanced
security mechanisms mentioned in Section 5. We measured elapsed time on the network
handler from the time it instructed the nodes to start until either the precomputation
finished successfully, or until it computed the final responses to be sent to the users
in the real-time phase. Table 3 gives timings for the real-time phase per node and for
the network handler, in both CPU and wall clock time. These timings show the low
computational load on the nodes during this phase.

These timings demonstrate the high performance of the system in the real-time
phase. The precomputation can be easily accelerated by performing more computa-
tions in parallel. Additional processors would significantly improve the time it takes

Batch Precomputation Real time
size Mean Std. dev. Mean Std. dev.
10 0.48 0.07 0.07 0.02
50 1.99 0.04 0.21 0.04
100 4.00 0.30 0.38 0.06
200 7.74 0.09 0.75 0.08
300 11.46 0.13 1.09 0.08
400 15.24 0.11 1.44 0.08
500 19.08 0.23 1.80 0.11
1000 37.94 0.19 3.58 0.12

Table 2. Timings measured on the network
handler from the start of the phases until the fi-
nal values or responses are computed. Timings
are in seconds (wall clock) for 100 runs of the
precomputation and real-time phases, for vari-
ous batch sizes using five mixnodes.

Batch Mixnode Network handler
size CPU Wall CPU Wall
10 0.01 0.04 0.01 0.07
50 0.04 0.16 0.02 0.21
100 0.07 0.30 0.02 0.38
200 0.14 0.60 0.04 0.75
300 0.22 0.87 0.06 1.09
400 0.29 1.15 0.07 1.44
500 0.36 1.45 0.09 1.80
1000 0.73 2.88 0.19 3.58

Table 3. Mean timings in seconds (CPU
and wall clock) for 100 runs of the real-
time phase of the cMix protocol measured on
the mixnodes and network handler, for vari-
ous batch sizes using five mixnodes. For the
mixnodes the mean time is taken over all
mixnodes.
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to compute all necessary encryptions and decryption shares. For the real-time phase, a
network connection with low latency would improve the timings.

10 Extensions, Discussion, and Future Work

Here, we first describe how receivers can send immediate responses. We then briefly
discuss how to arrange messages into batches and how to deal with node failures. We
also outline some of our future plans.

Return Path. It is easy to extend cMix to enable a receiver to send an immediate re-
sponse through the mixnet, for example, to acknowledge receiving a message. To ac-
complish this goal, the nodes generate additional random values s′ and compute the
permuted products S′ during the precomputation phase. The nodes and users also gen-
erate fresh keys k′, which will be used to encrypt the return message.

For a return path, the mixnodes apply the inverse permutations π−1 so that the re-
sponses will arrive at the original senders. Unless the recipient who sends a response
shares keys with the system, no fresh r′ values are needed because the message would
not enter the system blinded and hence Step 1 of the real-time phase could be skipped.
In Step 2, the system applies the inverse permutations π−1 and fresh s′ values. In Step 3,
to encrypt the response to the original sender, instead of multiplying only with its de-
cryption component, each node multiplies with the product of its decryption component
and k′ value.

Batch Strategy. cMix follows the “threshold and timed mixing strategy” from Serjan-
tov et al. [44], where a new round is started every t seconds only if there are at least
β messages in the buffer. We expect at least β users to be active at any given time.
When a smaller number of users is active, this strategy can lead to increased latency
or even disruption. At the cost of increased energy consumption, one design choice is
to inject dummy messages when needed to ensure enough traffic to have β messages
every t seconds. Alternatively, empty slots can be used to verify if the precomputation
was performed correctly, by revealing all committed values for these slots, where empty
slots to use should be chosen at random.

Node Failure. Because cMix uses a fixed cascade of nodes, it is important to consider
what happens if a node fails. First, we consider a node failure to be a highly rare event
because we expect each node to be a highly reliable computing service that is capable of
seamlessly handling failures. Second, the system will detect node failure and notify the
senders and the other nodes; senders will be instructed to resend using a new cascade
(e.g., the old cascade without the failed node). Each node can detect failures by listening
for periodic “pings” from the other nodes.

To minimize possible disruption caused by a single failure, at the cost of increas-
ing the precomputations, the following option can be deployed: Each node can have a
reserve of precomputations ready to use for certain alternative cascades. For example,
this reserve can include each of the alternative cascades formed by removing any one
node from the current cascade.

Future Steps. Tasks we plan to work on in the future include the following: First, we
would like to deploy cMix, including implementing and refining different applications.
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We would also like to carry out more performance studies. Second, we plan to explore
alternative and even more efficient approaches for enforcing integrity of the nodes, to
ensure that they cannot modify any message without detection. Third, currently, mes-
sage length is restricted by the group modulus. We have begun to work out how to apply
key-homomorphic pseudorandom functions [8] and an appropriate additive homomor-
phic encryption system to allow any length message. Fourth, we would like to explore
possible ways of reusing a precomputation in a secure way.

11 Conclusion

cMix offers a promising new approach to anonymous communications, building on the
strong anonimity properties of mixnets, and improving real-time cryptographic perfor-
mance by eliminating real-time public-key operations in its core protocol. By replacing
real-time public-key operations with precomputations, and by avoiding the user’s direct
involvement with the construction of the path through the mixnodes, cMix scales well
for deployment with large anonymity sets and large numbers of mixnodes. Even though
the adversary may know all senders and receivers in each batch, she cannot link any
sender and receiver unless all mixnodes are compromised. cMix offers the potential for
real-time performance improvements over existing mixnets, without losing any of their
security guarantees.
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