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Abstract 
We present the first undeniable signature schemes where signers are unconditionally secure. In 
the efficicnt variants, the security for the recipients relies on a discrete logarithm assumption or 
on factoring; and in a theoretlcal version, on claw-free permutation pairs. 

Besides, on the one hand, the efficient variants are the first practical cryptographically strong 
undeniable signature schemes at all. On the other hand, in many cases they are more efficient than 
previous signature schemes unconditionally secure for the signer. 

Interesting new subprotocols are efficicnt collision-free hash functions based on a discrete 
logarithm assumption, efficient perfectly hiding commitments for elements of Zp (p prime), and 
fairly practical perfect zero-knowledge proofs for arithmetic formulas in ZP or &u. 

1 Introduction 
The signature schemes presented here combine, for the first time, two independent features that 
have recently been suggested as desirable for signatures in certain situations: unconditional 
security for the signer and "invisibility", the characteristic property of "undeniable signatures". 

Each of these features will be described separately in $1.1 and 51.2, resp., together with 
reasons why one might want it and previous schemes realizing it. 

In $1.3, we sketch the properties of our new schemes. In particular, for cases where just one of 
the features is of interest, we mention how the new schemes compare with the previous schemes 
realizing just this one feature. 9 1.4 lists interesting new subprotocols, $1.5 gives an overview 
over the rest of the paper. 

1.1 Unconditional security for signers 

In conventional digital signature schemes, i.e.. those according to the idea in [DH], signers can be 
cheated with forged signatures if a cryptographic assumption, such as the hardness of factoring, 
turns Out to be wrong. This holds even for provably secure signature schemes such 11s GMR 
[GMR]. (Recipients, however, are unconditionally secure.) 

In contrast, symmetric authentication systems with unconditional, i.e., information-theoretical 
security for senders of messages (and for recipients, too) have existed for quite a while, e.g., 
[GMS, Wcl. An exponentially small crror probability is tolerated. (And this seems unavoidable: 
An attacker can always guess the complete secret information of the real sender.) Thus 
unconditional security in this context means that an adversary has no advantage over mere 
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guessing and cannot check locally whether a guess is correct. However, with symmetric 
authentication, disputes between a sender and a recipient cannot be solved. 

Recently, unconditional security for signers has been considered with "non-undeniable" signature 
schemes. 

This feature is interesting in practice, even if it is only combined with cryptographic security 
for recipients [PW2]. In particular, if two parties exchange signed messages, both were only 
computationally secure before. Now, if one party uses signatures unconditionally secure for the 
signer, and the other party conventional ones, the former party is unconditionally secure. This is 
particularly suitable if there is an asymmefry between the parties anyway: One would make the 
weaker party unconditionally secure. 

For instance, one can make individuals unconditionally secure when they exchange signatures 
with a large organization, e.g.. a bank in a payment system. The asymmetry is that the 
organization usually chooses the signature schemes and the security parameters. Thus it can 
provide for its own security, whereas many individuals may not even know what a security 
parameter is. The organization has no disadvantage due to the new scheme, since it had to trust a 
cryptographic assumption anyway; the individuals certainly have an advantage. 

But even the organization may see advantages: If clients appreciate security, there may be a 
marketing advantage. Also, it may be easier to obtain a guarantee of legal significance for such a 
system, since the organization bean the whole risk. In particular, in the (hopefully) more likely 
case that the cryptographic assumption is not broken, the risk that courts believe dishonest clients 
who falsely claim that their signatures were forged should be much smaller, since such a forgery 
is (mathematically) impossible. Also, if any forgery ever occurs, the organization itself is sure 
about this and can stop the scheme or increase the security parameters, in contrast to the case 
where a client's signature is forged in a conventional scheme. 

Previous schemes: In [WP, BPW, PW21, fail-stop signatures were introduced. They are 
cryptographically secure against forgeries in the sense of [GMR]. In addition, if a forgeery occurs 
nevertheless, the signer can prove this (more precisely: the fact that the cryptograpic assumption 
has been broken) unconditionally (in the sense described above) to everyone, e.g., by showing the 
factors of a number that she was assumed not to be able to factor. In particular, if signatures 
become invalid once a proof of forgery has been shown, signers are unconditionally secure, and 
recipients cryptographically. 

In [CR], a signature-like scheme where all parties are unconditionally secure was introduced. 
However, so far, none of these schemes is efficient in all cases: Fail-stop signatures are 

efficient for one-bit messages, but their length grows linearly with the length of the message (up 
to a certain point, since messages can be hashed). (But note that for some important situations, 
protocols with one-bit messages exist [PW2].) Unconditional signatures have a complicated 
precomputation phase and grow linearly with the number of possible recipients. 

1.2 Undeniable signatures: Invisibility 

Undeniable (or perhaps rather "invisible") signatures were introduced in [CAI and further 
developed, e.g., in tC2, BCDP]. These are digital signatures providing more privacy: A recipient 
of a Signature cannot show it to others without the help of the signer. If, however, the signer is 
forced to either deny or acknowledge a valid signature, e-g., in court, she cannot deny it. 
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Prcvious schcmcs: In the previous schemes. similar to conventional digital signatures, the Signers' 
security relies on a cryptographic assumption. (Don't be confused by the fact that the verification 
protocols of some schemes are "perfect zero-knowledge": A forger who breaks the cryptographic 
assumption can compute the secret key from the public key directly.) 

All the efficient schemes are based on a discrete logarithm assumption, and they are not 
cryptographically strong, i.e., proved to be as secure as the discrete logarithm. In particular, no 
security against active attacks has been shown (cf. [GMR]). There is, however, a 
cryptographically strong theoretical construction from any one-way function in [BCDPI. 

1.3 The new schemes 

We present the first three undeniable signature schemes were signers are unconditionally secure. 
The security of the recipients is cryptographically strong. In the two efficient variants, this means 
provably as secure as factoring or a discrete logarithm assumption, resp. In a theoreticid variant, 
the security of die recipients relies on arbitrary claw-free permutation pairs. 

If one cares about invisibility only, but not about which of the parties is unconditionally 
secure: Our schemes are not quite as efficient as the most efficient previous ones. However, if one 
wants the remaining party's security to be at least cryptographically strong, one must use ours. 

If one cares about unconditional security for signers only, but not about invisibility: In many 
cases, the new schemes are much more efficient than fail-stop and unconditionally secure 
signatures are SO far. However, if one relaxes the requirements on fail-stop signatures like they 
are in the schemes presented here, is.,  omits the fail-stop property and allows interaction between 
signer and recipient, one can construct variants of those which are even more efficient [PW2, Pfl. 

1.4 Interesting new subprotocols 

Several subprotocols may be interesting in their own right: 
W e  present cryptographically collision-free hash functions based on a discrete logarithm 

assumption, which need about one multiplication per message bit only. So far, this was only 
possible on the factoring assumption, whereas i n  the discrete logarithm case, about one 
exponentiation per bit was needed [Dl]. 

We also construct efficient perfectly hiding commitments for elements of Zp, where the 
unchangeability relies on a discrete logarithm assumption. The commitment is only as long as the 
message. So far, perfectly hiding commitments where normally made bitwise, which induces a 
large message expansion. The only efficient version for larger messages was based on factoring 
[BPW. 

The commitments can be added and subtracted locally, like those of [BPW]. We present 
efficient inequality proofs and procedures to multiply them. This makes fairly practical perfect 
zero-knowlcdge proofs (computationally convincing) for arithmetic formulas in Z,, or zp 
possible. 

1.5 Overview 

We first present the basic idea in an informal way ($2). We then desribe the basic parts and 
security proofs of the discrete logarithm scheme ($3) and the theoretical version ($4) and sketch 
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the factoring schcmc ( $ 5 ) .  Finally, we sketch the remaining parts, which are quite similar in the 
three schemes (96). 

2 BasicIdea 
Our scheme combines ideas of previous undeniable signatures and of fail-stop signatures. 

The basic idea to achieve the invisibility characterizing undeniable signatures is that a 
signature can only be verified by an interactive protocol between the signer and the recipient, 
preferably in zero-knowledge. 

The basic idea of fail-stop signatures is that, given a public key and perhaps previous 
signatures, each new message has many acceptable signatures s. On a cryptographic assumption, 
however, the signer can compute just one of them, say s'. If the cryptographic assumption is 
broken and someone forges a signature, still with high probability they will not use s', since all 
acceptable signatures look equally likely to them in the inforrnation-theoretical sense. Thus the 
signer now knows two different signatures for one message. This counts as a proof of forgery. 

In combination with invisibility, the latter idea is changed a bit: When the real signer receives 
the forged signature, say sf, she cannot prove that s* and sf are two different signatures for the 
same message, since she cannot carry out the verification protocol for sf. Instead, she will only 
prove (in zero-knowledge) that her r e d  signature is not sJ (However, this is not a proof that the 
cryptographic assumption has been broken, since it can be done for any value sf. Thus this scheme 
has no fail-stop property.) 

3 The Discrete Logarithm Scheme 
Most things described in $43.1-3.3 and 3.5-3.6 can be found in more detail in [CHF']. 

3.1 Assumption and notation 

The cryptographic assumption, needed for the security of the recipients, is that we have an infinite 
sequence of groups Gp of known prime orders p ,  where one can perform the group operations and 
choose random elements efficiently, but the discrete logarithm is hard. (The security of both 
signers and recipients depends on the primality ofp.) This is the same assumption as in [CA, C21. 

An efficient proposal from [CAI is Gp = Z;/{+1) where 4 = 2p+l and both p and q are prime. 
Gp can be represented by [ I,.. ., p ) .  Note that if the discrete logarithm in a group is hard, it is also 
hard in a large subgroup (i.e., of logarithmic index). Hence this is just the normal discrete 
logarithm assumption for zq*, restricted to primes 4 of the form 2 p + l .  These are usually 
considered as particularly hard cases. 

Groups Gp = GF(2")' for Mersenne-primes p = 2"-1 or large subgroups on elliptic curves are 
also possible. 

Forg  = ( & I ,  ..., g,J E GPn andx=(xl, ..., x,) E Z,;, let 

(Since the order of $, is p ,  exponents only need to be defined modulo p. )  

F o r x  = ( X I ,  . . ., x,), y = (y1, , . ., yn) E Zp", denote the inner product by x * y := x l y l  + . . . +XJn. 

g* := g p  - . . . * &"". 

For a message m E zp, let rrr denote its extension to a vector m := (1, 1, m). 
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We will call the signer Sibyl and the recipient Rick. 

3.2 

To give a better idea of the new features of the scheme, we first assume that just one message of 
fixed length for a given recipient is to be signed. Efficient extensions to many messages of 
arbitrary length and more recipients, plus extended security definitions, are quite canonical and 
sketched in §6. 
Key exchange: 
0. All the participants agree on a group gp of prime order p and a parameter L. ( L  determines 

System structure for one message of fixed length 

that the probability of successful cheating in the following zero-knowledge proofs should be at 
most 2-L.) 

1. The recipient Rick chooses a mple 
6 = (81. gzt 83) 

of generators of Gp, i.e., any elements of Gp*, with g1 # g2, randomly and publishes it. 

The public values p ,  L, and g are parameters of the following algorithms, but will be omitted for 
sirnpiicity. 

2. The signer Sibyl checks that gl  # 1 and gl # g2. Then she chooses a secret key 
SK = ( X I ,  XZ,  X X )  E ZZ; 

randomly and computes and publishes the public key 
PK = pub(SK) := gsK = glxl . g$z g3q. 

Signing: To sign a message m E Zp, Sibyl forms the signature 

sign(SK, m) := SK * = x1 + x2 + m x3. 

Verification: To accept a value s E zp as a signature on m, Rick requires Sibyl to give a perfect 
zero-knowledge proof of knowledge for the relation corresponding to the following statement 
(where PK, m, and s are common inputs): 

I know SK: PK = pub(SK) A sign(SK, m) = s. (1) 

Disavowal: To disavow a value sf E Z p  as a signature on m, the signer gives a perfect zero- 
knowledge proof of knowledge of the statement (again, PK, m, and sf are common inputs): 

1 know SK. PK = pub(SK) A sign(SK, m) # sf. (2) 

The description of efficient zero-knowledge proofs for these two purposes is postponed to 03.6 
and 93.7. 

3.3 Security of the signer 

We must prove k a t  however a forger Felix (using ail the information that he could obtain from 
Sibyl) forges a signarurc, the probability that Sibyl can disavow it is exponentially close to 1. We 
f i s t  show this without the information obtained from verifications and disavowals: 

Lemma 1: V PK, m # m', in the probability space defmed by the random choice of the secret key 
S K  If a forger Felix knows PK = pub(SK) and s = sign(SK, m), then for any forged signature 
sf form*, the probability that Sibyl can disavow sfis 1 -p-*. 
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Proof: Because of the completeness of the disavowai protocol, any signature on m* other than 
sign(SK, m') can be disavowed with probability 1. Thus i t  suffices to prove for all sf: 

Assume g2 = glar g3 = sip, and PK = g17. (This representation is possible, since gl is a generator.) 
Then PK = pub(SK) tj g Y= g lxl + m2 + p*3 w y = x1 + ax2+ @3 in zp, 

s=sign(SK,m) e s = x 1 + ~ 2 + m . x 3 ,  

and sf=sign(SK,tn') w s f = x l  +xZ+m*.x3. 
The matrix of these three equations can be transformed by row operations into 

~ r ( s f g  sign(SK, m*) I PK   pub(^^) A s = sign(SK, rn)) = 1 -p-'. (3) 

[b 1:a ,?!p j 
0 0 m*-m 

We have m # m*, and we explicitly required g l  r g2, i s . ,  a # 1. Thus the rank of this maaix is 3. 
(Since p is prime, a rank is defined.) Hence exactly p secret keys fulfil the condition of the 

0 

Note that Sibyl's security just depends on gl # g,, not on the randomness of the generators. Thus it 
does not harm her if Rick chooses them incorrectly. Also, we have considered an adaptive chosen 
message attack for this simple case, since "V m, rn"' means that Felix can choose rn and m' in my 
order. 

Of course, Felix does not just see PK and s, but he may ask Sibyl to verify s and to disavow other 
signatures. Here we need one restriction: There are only p possible signatures for m*, thus we 
cannot allow Felix to try them all. For example, we restrict him to 6 attempts. This does not 
contradict unconditional security, since it is 3 restriction not on Felix's computing abilities, but on 
the number of disavowals Sibyl or a court are willing to perform. In practice, for a realistic size 
ofp, $disavowals are impossible anyway. 

Theorem 1 (Sibyl's security): V PK,  m: Assume a forger Felix knows P K  = pub(SK) and 

probability in (3), and sf= sign(SK, rn*) holds for just one of them. This proves (3). 

s = sign(SK, m) and can ask Sibyl to verify s arbitrarily often and disavow up to 6 adaptively 
chosen other signatures, is.,  pairs (m*, sf, # (m- s). Then the  probability that Sibyl can 
disavow them all is at least 1 - 6 - 1 .  

Proof (Sketch): Verification and disavowal are perfect zero-knowledge. Hence a verification 
gives Felix no information about SK at all, and a disavowal tells him at most sign(SK, m*) f sf for 
one pair (m*, sfi. By the proof of Lemma 1, this excludes exactly one secret key. Thus no strategy 
gives him a better chance than $ guesses for SK. The probability that he guesses right at least 

0 once is at most Gip = 6 - l .  

3.4 Invisibility 

Invisibility of signatures, i.e., that they cannot be recognized without the help of the signer, was 
not defined formally in the first publications about undeniable signatures. A definition of 
computational invisibility (developed independently of the abstract-version of this paper, and 
probably earlier) ought to appear before this in the final version of [BCDP], a newer one is 
contained in [CBDP]. Here, however, we need perfect invisibility, corresponding to the 
unconditional security of the signer. 
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(Note that the zcro-knowlcdge property in [C2] concerns just verification and disavowal, not 
the act of issuing the signature. Issuing the signature cannot be zero-knowledge, since it enables 
the recipient to do something that hc could riot have done beforc, i.c., show a signature that Sibyl 
cannot disavow. More formally: Perfect zero-knowledge (pZKP) implies that the distribution of 
the prover's output is independent of her secret knowledge. This is not the case with the 
signatures.) However, with respect to everybody except Sibyl, perfect zero-knowledge seems just 
what we need. The information that these outsiders have about Sibyl's secret knowledge is 
modelled by a probability distribution. Thus, as a basic weaker version of perfect zero- 
knowledge, we define (in the notation of [TW]): 
Dcfinition: LetR be a relation, and for each x with R, := (y I ( x ,  y) E R )  f 0, let pxQ) denote a 
probability distribution on R,. An interactive TM P is perfect zero-knowledge against outsiders 
(pZKO) on ( R ,  @,)J iff for all probabilistic polynomial interactive TMs V*, there is a simulator 
M, so that M&, s) is polynomial in Irl, and for all x with R, # 0 and all s, i: 

C @,Q) pr((p(y), v * ( s ) ) ( x )  = 2)) = Pr(Mv*(x, s) = z ) .  + 
Y 

(A computational analogue of this definition can be identified in die final version of [BCDPI if one 
omits the active attacks by the distinguisher and notices that the probab es there must also be 
taken over the key choice.) 

For the most basic part of invisibility, i.e., defining that the protocol of just issuing one signature 
is invisible, we can directly apply this definition: P is the T M  that, on input m, issues 
z := sign(SK, m)  once, X is ( ( P K ,  S K )  I P K  = p u b ( S K ) ] ,  and the distributions pPK(SK)  are 
naturally defined by Sibyl's choice of SK. 

can simulate the signer by choosing z randomly. 

If P additionally carries out perfect zero-knowledge verifications, one can show that it is still 
pZKO by proving that the concatenation of a pZKO and pZKPs is always pZKO. (Although 
intuitively clear, this is not trivial formally, but there should be 110 other difficulties than in 
similar proofs for ZKPs [0, TW].) 

For adding disavowals, one may generally relax the requirement to statistical zero-knowledge 
against outsiders (since before each disavowal, the public information x is slightly increased by 
revealing sign(SK, mi) # .cfi). 

Also, for the case where the person to whom the recipient wants to show the signature has 
information I about y secret from the recipient, one can extend the notion to partial outsiders by 
computing the expcctcd value of thc probability of the outputs z based on the corresponding 
probability distribution p(,,fi,cY). In the siixi;k case considered ;a this $3, I cm only be the little 
information from disavowals. 

This definition, like its computational counterpart, does not consider cooperating verifiers who 
try to get a signature verified simultaneously, as described in [C2, DY]. (That is, practical cases 
covered by this model are that a cheating recipient tries to show a signature on private 
information to third parties who are fairly honest, but might not look away when being shown a 
conventional signature, or tries to sell a received signature afterwards.) Measures against 
cooperating verifiers exist (C2, CBDP]: Firstly, the verification protocol should not only be zero- 

For the particular system of $3.2, we can easily see that this definition is fulfilled, since one 
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knowledge, b u t  start with verifier-commitinents. This is the case in all previous undeniable 
signature schemes and excludes the practical attack described in [DY], where the verifiers just use 
a coin-flipping protocol to choose their challenges. Secondly, against more complicated uses of 
multi-party computations, one can take measures involving timing. However, they are difficult to 
formalize. 

3.5 Security of the recipient 

We f i s t  show that pub is cryptographically collision-free, i.e., Sibyl cannot find two secret keys 
fitting the same public key. A bit more generally, we prove the following lemma: 

Lemma 2 (Collision-freeness of n-tuple exponentiation): On the discrete logarithm assumption of 
$3.1, and for fixed n: For any probabilistic polynomial-time algorithm A,,, any polynomial Q, 
and sufficiently large p :  The probability that A,, on input a random n-tuple G, = (gl. ..-,gn) of 
generators of G,,, finds a G,-collision, i.c., 

is smaller than l/Q(log(pj). 
X, #X,’ E Z/ with G,X“ = G,’”’, 

Proof (Sketch): The proof is by induction on n. The case n = 2 is quite easy. For n > 2, we assume 
that an algorithm A, contradicts the lemma and show that the following algorithm would then 
contradict the lemma for n-1: 

A,-]: On input G,-l = (gl, .... g,,-J: 
1. Choose el, ..., e,-l from Z,,* and rl .  ..., r,-l from Zp randomly, and let 

2 .  Define an n-tuple 
E := (el, ..., and R := ( r l .  .... r,-l). 

G, := (g1 el , ..., gn-len-l, g p  ..... &p). 
(If the last component of G, is not a generator, repeat the choice of r,-l until it is.) 

on G, and call the result C,. If C, is a collision (X,, X,’), output 
Cn-1 := ((tixi+ rix,, ..-, en-lX,-l+ r,-lxn), (elx’l+ rlx’,,, ..., en-jX;t-l+ r-,-&,J). 

One easily sees that if C, is a collision and the two components Xn-,, X,-,’ of C,-] are different, 
then C,-1 is a collision, too. Next one shows that for fixed G,-,. G,, and C,, the equation 
X,-1 = X,-j’ can be true for just one of the many possible underlying choices of I?. Finally, one 
formalizes the following idea: When A, is called, it has no information about R except G,. Thus 
no matter how A,, chooses C,, with high probability R is not the one for which X,1 = X,-l’ for 

3. Run 

the given G,-,. 0 

Theorem 2 (Rick’s security): On the discrete logarithm assumption of $3.1, it is infeasible for 
Sibyl to prove an s to be a valid signature for a message m and to disavow it later. 

h o o k  The soundness of the interactive proofs implies that if Sibyl can prove s to be a valid 
signature for m and Iater disavow it, she can compute secret keys SK and SK8 with 

Since sign is deterministic, this implies SK # SK’. i.e., Sibyl has found a collision of the function 
0 

PK = pub(SK) A sign(SK, m) = s A PK - , i~ub(SX*) A sign(SK*, m) # s. 

pub. This contradicts Lemma 2. 
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3.6 Efficient verification 

A signature is verified by use of the following protocol: 
Sibyl (Prover) Rick (Verifier) 

Repeat L times: 

Choose R= (r,, r2, r3) E Zd randomly. 
Compute SK= SK+ R, PK= pub(SQ, 
PK'= pub(S0 and s'= sign(SK', rn) PK', S' ' 

b 
Choose b E (0,l) randomly. 

< 

(If L O ,  open the blinding R. 
If b=l , prove the knowledge i fb=OorI , resp.  Check: 
for the blinded problem instance.) 

R or SK' , 

I f b O :  P F = P K @ ~  S ' = S + R D ?  

If b 1 :  PK = pub(s~7 A s'= sign(SK: m) ? 

Protocol 1 Verification of a signature s 

Lemma 3 (Verification): Protocol 1 is a perfect zero-knowledge interactive proof of knowledge 

Proof (Sketch): One can easily show that this is a special case of the proof system for random self- 
reducible relations of [TW, Th. 41; the self-reduction is just the addition of a random R to SK. 
(More systematically, one can see that for qpP,,(SK) = @ub,(SK), signp(*, m ) )  is a homo- 
morphism for all p ,  rn, and construct a similar protocol to prove the knowledge of a preimage 

One can add verifier-commitments on the challenges b like in the protocol in [Br] (also sketched 
in [BCLL]), in order to achieve the same robustness against cooperating verifiers as other 
undeniable signatures have (see !j3.4), and probably also to parallelize the rounds. (One would 
base the commitments on 61, and a simulator could use a cheating verifier to compute a, P, and Y 
from Lemma 1 in order to cheat, too.) 

for the relation defined by Formula (1). 

under my efficient homomorphism.) 0 

3.7 Efficient disavowal 

The basic structure of our disavowal is similar to that in [Cl): 
In an ideal version, there would be a number L' of rounds, with Rick allowed to choose one of 

three challenges in each round. We now consider one round: First Sibyl chooses R randomly and 
computes blinded values SK' = SK + R, PK' = pub(SK3, s' = sign(SK, m), and sf = sf + R*m. She 
prepares commitments on PK', s', and sf (cf. Fig. 1). Rick can choose among the following three 
challenges: 

C1 
C2 
C3 

Sibyl must open the two left commitments and reveal R. 
Sibyl must open the two right commitments and reveal SK'. 
Sibyl must prove inequality of the values in the lower two commitments, without opening 
the commitments. (If they were both opened, Rick could compute the correct signature s.) 
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and reveal R 

c3: # 

Fig. 1 Idea of the disavowal protocol; enclosures represent commitments 

This idea can be implemented with bit commitments, similar to [Cl]. However, bit commitments 
make the protocol far less efficient than verification. Thus we present a new variant, almost as 
efficient as the verification, using commitments on complete numbers instead of bits. The main 
problem will be the inequality proof. 

We present the protocol in a generalized version, so that it can also be used in the factoring 
case. (A different and slightly simpler protocol, with a complete proof, can be found in [ C W ,  but 
it is slightly less efficient and could not be generalized to the factoring case.) 

Defnition (Sketch): A homomorphic perfectly hiding commitment scheme for a family of abelian 
groups consists of an algorithm to choose a key K,  a test that is passed by all correctly chosen keys, 
sequences (G,), (HK) ,  and (DK) of abelian groups where all standard operations are efficiently 
computable, efficient homomorphisms hK:  GK -+ H K  and zK: GK + DK, and an efficient 
algorithm to choose elements of zKS1(a) randomly. 

If hda) = A  and IrKfa) = a, we call A a commitment to a, and say A is opened by showing (r. 
The two security requirements are: If K passes the test, then for each commitment, all contents 

+ 
For the concrete system, we keep the commitment scheme from [CHP], which has independently 
bcen proposed in [Pel, too (but without the inequality proof): 

Lemma 4 (Commitments): The following parameters define a homomorphic perfectly hiding 

are equally probable. If K is chosen correctly, then h is cryptographically collision-free. 

commitment scheme for a family of abelian groups: 
K consists of ;L group $, and two generators g and g2 of $,, with gl # g2. 

If a= (al, a, then hda) = glal . g2q and zda) = al. 
Given a, choose a := (a, qJ with random q E Z,,. 

GK = Zp2, HK = Gp, DK = Zp. 

Proof: Obviously, h, and ~r, are homomorphisms. The content is unconditionally hidden since 
for each A E Gp, a E zp, there is exactly one q with h(a, %) = A. Lemma 2 implies that h is 

The inequality proof is based on the following ideas: 
1. Since contents of commitments can be subtractcd, it suffices to show that the value a in a 

commitment A is not zero. 
2. Our groups D, are actually rings Zp or i&. In Z,,, we can prove u # 0 in zero-knowledge by 

proving that it has an inverse 6, and in Z2c, by proving that there exists b such that a-b = 2"'. 
We unify this by saying that DK has an element c t 0 such that V a ;t 0 3 b: a.b = c, and this b 
can be computed efficiently. 

3. Thus we finally need a protocol to prove that the product of the contents a and b of two 
commitments is C. We adapt an idea for shared secrets from [Be]: The factors are blinded as a' 

collision-free. 
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= a + y ,  b' = b + z, and either a multiplication u'sb' = d is opened, or the correct connection 
between the original and the blinded multiplication must be shown. The idea is that, once the 
blinding factors y and z are opened, a'&' = ash + a.z + y.0 + y z  is a linear equation connecting C 

and d and can therefore be tested on the unopened commitments. We only need to be able to 
multiply commitmcnts and the values used to open them by contents. Again, we present a 
unification of the factoring case and the discrete logarithm case: 

Definition: A semi-homomorphic perfectly hiding commitment scheme for a family of 
commutative rings is a homomorphic perfectly hiding commitment scheme for a family Of 
abelian groups if additionally 

1. the D ~ S  are commutative rings with an efficient multiplication algorithm, and 
2. there are efficient "multiplications" of elements of GK and H K  by those of DK, which 

+ 
Whenever DK is a ring Zx, like in our cases, we can obtain suitable multiplications as follows: If 
d e  Zx is represented by z E (0, ..., 1-11, let d - g := g+g+.. .+g, z times. 

In order to manage with just L rounds overall, the protocol from Figure 1 and the multiplication 
protocoI are joined more closely. 

About pub and sign, we only need that they are group homomorphisms, e.g., pub: G* --f G', 
sign(., m): G* -+ G", and that the results are imbedded into the domain of the commitment 
scheme, e.g., by injective functions I*: G' 4 D,, I :  G" DK. In our discrete logarithm casc, 
G" = zp, hence the same group $, can be used here as for the signature scheme itself. For 
G' = $,, we need an efficient embeddingr*: Gp + Zpp for a possibly larger prime p'.  However, 
e.g., for the f i s t  choice of $ in $3.1, we can usep' = p and I only needs to changep into 0. 

We obtain the following Protocol 2: 

Repeat L times: 

commute with the homomorphisms (Le., hK(d4)  = d.hk.(a) and ndd-a) = d.xK(c~)). 

Sibyl prepares commitments: (Remember: c is  a fixed nonzero value with V a * 0 3 b: ab = c.) 
Choose R. y, z randomly. 
Let SIC-- SK+ R, PK'= pub(SIC). s'= sign(SK, m), sf = sfc sign(R, m), 
a=r(sf)-i(s?, bsuchthatab=c,a'=a+y,b'=b+z,andd=a:b: 
Choose commitments Pon r'(PK7, SPon  sf. S'on s', Bon b, Yon y, Zon  z. Don d. 

She sends the commitments to Rick, and they both compute locally: 
A = S F - S : A ' = A +  V; B'=B+Z 

Rick can choose among 2 possibilities: 

Sibyl: 

Dpens P, S: A :  B', D, shows PK'and S O ,  

and reveals SK'. 
c1 

Rick tests if the commitments 
are opened correctly and if: 
PK'= pub(SK). s'= sign(SK, m) 
a:b'= d. 

C2 Opens P', SF, V, Zand shows PK'and sf ,  
reveals R, 
and opens D - P A  - y.9 by showing x := 6- z-a- yfl. 

P K  = PK*PUQKJ 
sf = sf+ sign(9 m) 
a = c + y z .  

Protocol 2 Efficient disavowal 
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Lemma 5: Protocol 2 is a pcrfect zero-knowledgc intcrxtive proof of knowledge that Sibyl either 
knows a satisfying assignment for the disavowal formula or can break the commitment scheme 
(cf. [BPI). 

Proof: Omitted in this extended abstract. I3 

It is easy to see that the proof of Theorcm 2 is not much changed by the occurrence of the commit- 
men t scheme in Lemma 5.  

Remark: The multiplication protocol can easily be adapted to the case where c is hidden in a 
commitment, too (actually, this is closer to the protocol from [Be]). Thus we can compute 
arbitrary arithmetic terms of commitments, i.c., we can build perfect ZKPs of atomic formulas 
in zp or Zzu. Since logical operations can be substituted by arithmetic ones. we  can generalize 
this to all arithmetic formulas in these rings. 

4 A Theoretical Construction from Claw-free Permutation Pairs 

For theoretical purposes, we sketch a construction based on an arbitrary family of claw-free 
permutation pairs (not necessarily with a trap-door) [GMR, Dl].  This seems a sensible 
assumption, since it is the same one on which collision-free hash functions can be constructed, and 
we require a similar property from our function pub. 

Key exchange: 
0. All participants agree on a family of claw-free permutation pairs and parameters k for 

1. Rick chooses a claw-free pair (d,fo,fi) and publishes it (cf. [GMR]). Cf0,fi are the 

cryptographic security, CT for information-theoretical security, and L for the ZKPs. 

permutations; d is an algonthm to choose a random element from their common domain D.) 
He proves Sibyl in (computational) zero-knowledge that his choice is correct. 

From the claw-free pair, a hiding function h: (0, 1 ) x D 3 D is defined as 
W l , . .  .,ba), x) =fLq( .. .V@,...>. 

SK=(sk l ,Sk2)=( (a ,x ) , (b ,Y) )  E ((oP1)axD)2 

(4) 
2. NOW Sibyl uses d to choose a secret key 

randomly and computes and publishes the public key PK = pub(SK) = (h(skl) ,  h(sk2)) E D2. 
Signing: Now we assume that (0, 1 )ais  interpreted as GF(20). The message space is GF(29  and 

sign(SK, m) = a + b m  in GF(2a). 

Verification and disavowal are perfect zero-knowledge proofs of knowledge for the relations 
defined by Formulas (1) and (2).  

The three required ZKPs exist on our assumption (e.g., [GMW, BCC, Dl]). 

Security (Sketch): We use that 11 is cryptographically collision-free and hides its first argument 
unconditionally [BPW, PWl], and that for each P K ,  the family (sign(SK, ) )SK pub-i(pK) is 
strongly universal2 [WCj. 
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5 A Practical Scheme Based on Factoring 
An inefficient scheme based on factoring can be obtained as a special case of 94 by using the 
special claw-free permutation pairs from [GMR] .  However, to make the scheme efficient, we need 
special zero-knowledge proofs. We only sketch this scheme in this extended abstract. 

The proof of Lemma 3 implies that one can use an analogue of Protocol I for efficient 
verification if sign(*, rn) is a homomorphism on the same group as pub. Thus we must change sign 
from $4 to 

sign(SK, in) = a + 6-rn in Zp. 

To prove an analogue of Lemma 1 with a probability of 1- 2-r (and thus Sibyl's security), we now 
restrict the message space to (0, . . ., P r - l  ) . 

To be able to use the efficient disavowal of Protocol 2 and Lemma 5, we use the following 
commitments (where h~ is the same function as h in $4): 

Lcmma 6 (Commitments): The following parameters define a homomorphic perfectly hiding 
commitment scheme for a family of abelian groups: 

K should be a Blum-integer n. (This defines a GMR claw-free pair.) The test checks n 5 
mod 8 and n = ps - q' with p = 3 mod 4 for odd s, t ,  using the efficient proof-system from 
[GPI . 
D, = q., H,, = f QR, /(-j-li, G, = qo x H,, with an operation defined by 

If a = (a, x),  then hda) = k (4'. x 2 4  and nda) = a. 
Given a, choose a := (a, x )  with random x E H,,. 

( a x )  0 (b,y) :=((a + h )  mod 24  IX - y .4(0+b)dv2~1).  

Proof: The main parts follow from [BPW]. It only remains to show that the GMR claw-free pairs 
are still permutations when n is not a Blum-integer, but of the form that Sibyl checks. This is quite 
easy. 17 

6 Efficient Extension to Many Long Messages 
Everything in this section is only sketched in this extended abstract. 

Definitions: First, of course, the definition of the security of the signer (in Theorem 1) must be 
extended to more than one message. This means introducing the possibility for sign to need 
memory, and a real adaptive chosen message attack, i.e., an additional "V ml. rn2 .. .: assume Sibyl 
signed rn l ,  m2 . . . in this order ...'I. (Thus an active attack by an unrestricted attacker is easier to 
formalize than a normal one, see [GMR] . )  

The security of the recipient can still be defined as in Theorem 2. 
In the definition of invisibility, one must include that both the recipient and the (partial) 

outsider to whom the signature is shown can have received more signatures. (For the 
computational variant, one can see this in detail in the future versions of [BCDP]. An additional 
complication is that our schemes are not memory-less; however, like in all "perfect" definitions, 
we need not model ;he wtsider explicitly as a distinguisher, but only in the "V" over the public 
and private information (x, I )  that he can obtain.) 

Prekeys: If there are many participants, of course each recipient Rick publishes just one mple g, 
which can then be used by all signers when signing a message for Rick. The participants can also 
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jointly choose one triple g whose randomness they all trust. In the discrete logarithm case, they 
just need a coin-flipping protocol: this is feasible. (In this case, one might even let a center make 
the choice alone, since no way of choosing il trap-door is known yet.) If participants disrupt, the 
computation is repeated without them. Although a bias results, security can still be proved for g's 
chosen this way. In the following, we consider the case of one g only. 

Tree-authentication: As usual, one can extend the scheme to many signatures, without augmenting 
the public key, by two versions of tree-authentication. First, the previous public keys can be used 
as leaves of a hash tree [Ml]. The new public key is just the root. (However, for invisibility, the 
signer must tell the recipient the leaves of the tree, and must use the leaves in random order.) A 
collision for the hash function hash used counts as disavowal, and for the recipient's security, hash 
must be cryptographically collision-free. There are such functions based on claw-free 
permutation pairs, and an efficient one based on factoring [Dl]. For an efficient hash based on the 
discrete logarithm, we can use Lemma 2 directly, since we only need to hash messages of fixed 
length. 

Generating the complete secret key in advance is the most efficient possibility; however, if one 
wants the scheme to go on "polynomially forever", one can use some signatures to sign new 
"public" keys in a tree-like fashion [M2,  NY]. 
Message hashing: Similarly, long messages can be hashed before signing. For this, we can use the 
general construction of computationally collision-free hash functions hash* for messages of 
arbitrary length from hash functions hash for messages of fixed length from [D2], starting with 
hash from the previous paragraph. 

Hence, public keys and signatures are as short as in conventional signature schemes, such as GMR. 
The information exchanged during verification or disavowal is about L times the length of ;L 
signature. 
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