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INTRODUCTION & MOTIVATION 

Digital signatures [DH]-unlike handwritten signatures and banknote 

printing-are easily copied exactly. This property can be advantageous for some 

uses, such as dissemination of announcements and public keys, where the more 

copies distributed the better. But it is unsuitable for many other applications. 

Consider electronic replacements for all the written or oral commitments that are 

to some extent personally or commercially sensitive. In such cases the 

proliferation of certified copies could facilitate improper uses like blackmail or 

industrial espionage. The recipient of such a commitment should of course be 

able to ensure that the issuer cannot later disavow it-but the recipient should 

also be unable to show the commitment to anyone else without the issuer’s 

consent. 

Undeniable signatures are well suited to such applications. An undeniable 

signature, like a digital signature, is a number issued by a signer that depends on 

the signer’s public key and the message signed. Unlike a digital signature, 

however, an undeniable signature cannot be verified without the signer’s 

cooperation. 

The validity of an undeniable signature can be ascertained by anyone 

issuing a challenge to the signer and testing the signer’s response. If the test is 

successful, there is an exponentially high probability that the signature is valid. If 

the test fails, there are two cases: (a) the signature is not valid; or (b) the signer is 

giving improper responses, presumably in an effort to falsely deny a valid 

signature. But even if the signer has infinite computing power, the challenger can 
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distinguish case (a) from case (b), with exponentially high certainty, by means of 
a second challenge. 

Quite efficient and practical undeniable signature protocols based on the 
“discrete log” problem [DH] are presented below. Since all signers can use the 
same group, signatures created by different signers commute with each other-a 
useful property [CE] that has not yet been achieved for digital signatures. 
Furthermore, a new type of “blinding” [C] can be applied in the signing as well as 
in the challenge and response. 

CRYPTOGRAPHIC SETTING 
Consider using the group of known prime order p :  All values transmitted between 
the participants are elements of this group, the multiplicatively denoted group 
operation is easily computed by all participants, and taking the discrete log in the 
group is assumed to be computationally infeasible. 

One potentially suitable representation is the multiplicative group of the field 
GF(29, where p = 2n-1 is prime. A second is the group of squares modulo prime 
q, where q-1 = 2p. (Notice that such choices rule out the Pohlig-Hellman attack 
on discrete log [PH].) An attractive variation on the second approach represents 
group elements by the integers 1 to p ;  the group operation is the same, except that 
all results are normalized by taking the additive inverse exactly when this yields a 
smaller least positive representative. 

PROTOCOL 
A suitable group of prime order p and a primitive element g are initially established 
and made public for use by a set of signers. Consider a particular signer S having 
a private key x and a corresponding public key g X .  A message m (#1) is signed by 
S to form signature z, which should be equal to mX. Someone receiving z from S 
may wish to establish its validity immediately; the challenge/response protocol 
used to establish this, though, is the same for any later verifier V. 

The initial challenge is of the form za(gx)b, where V chooses a and b 
independently and uniformly from the group elements. The response should be 
formed by S raising the challenge to the multiplicative inverse of x modulo p .  
When V computes magb and finds it equal to the response, then V knows (by 
Theorem 1 below) that, even if S were to have infinite computing power, the 
probability of z being unequal d (and hence invalid) is at most p”. 
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When the value V computes is unequal to the response, the 
challenge/response protocol should be repeated with independently chosen c and 
d replacing a and b, respectively. Then V can use the two responses rl and r2 to 
test whether (rlg-b)c = ( r g d ) a .  Equality means that S is answering consistently 
and z is invalid, with the same high probability as for signature validity; inequality 
means that S is answering improperly (Theorem 2). 

UNDENIABILITY 
Two essential points can be proved: 

Theorem 1: Even with infinite computing power S cannot with probability 
exceeding p-1 provide a valid response for an invalid signature. 

Proof: First notice that each challenge value corresponds to p pairs (a,b), as a 
simple consequence of the group structure. It is sufficient to show that if the 
signature is not d, then each pair corresponding to a challenge value requires a 
different response. Suppose z = d’, with x # x’. If two pairs (a&) and (a’&’) yield 
the same challenge, then 

,,&a gxb = ,&a’ gxb’ 
d’(a-a’) = gr(b’-b). 

Assuming, by way of contradiction, that the same response is accepted for both 
pairs gives 

d gb = d ’ g b ’  
& z - a ?  = @’-b). 

But x f x’. Q.E.D. 
Theorem 2: Even with infinite computing power S cannot with probability 
exceeding p-1 avoid detection of inconsistency between two invalid responses to 
a valid signature. 

Proof: It suffices to show that, after a first invalid response, the ability of S to 
show consistency of the second invalid response contradicts Theorem 1. After 
the first invalid response, a, b ,  and m may in the worst case be assumed known to 
S .  The consistency test ( rlg-b)C= (rs-d)U can be written as r2 = (rll/ag-b/a)cgd. 
But since ‘1 l’ag-bla may be regarded as a known constant at this point, being able 
to satisfy this test implies an ability to establish the validity of an invalid signature. 
Q.E.D. 
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UNFORGEABILITY 
Computing the private key from the public key is clearly no more difficult than 
breaking Diffie-Hellman key exchange. But an open question remains: Can the 
oracle for inverse roots provided by the signer help a forger? In view of the fact 
that minimum disclosure versions of these protocols are now known (and will 
appear in subsequent work), the example shown here is only proposed as a 
cryptosystem predicated on this open question being answered in the negative. 

BLINDING 
Of the two blinding techniques appearing in the literature, one of them, called 
blinding for “unanticipated” signatures [C], can be applied to the present 
protocols. The blinding party first chooses r independently and uniformly at 
random, forms the blinding factor gr, and computes the signature of the blinding 
factor as (gX)‘. To blind a message before it is signed, the message is multiplied 
by the blinding factor; unblinding entails multiplying by the multiplicative inverse 
of the signed form of the blinding factor. The challenge/response protocol 
requires V to show m to S, but V may blind m in the challenge and use the signed 
form of m and the blinding factor in verifying the response. 

A previously unpublished blinding technique, which may be called 
“exponential” blinding, can also be used. A message is blinded by raising it to an 
independently and uniformly chosen random power; unblinding is by raising to the 
multiplicative inverse of the random power. 

CONCLUSION 
Undeniable signatures are better suited for many applications and are efficient. 
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