
MULTIPARTY COMPUTATIONS ENSURING
PRlVACY OF EACH PARTY’S INPUT

AND CORRECTNESS OF THE RESULT

David C h a m
Ivan B. DamgGrd

Jeroen van de Graaf

Centre for Mathematics and Compurer Science
Kruislaan 413 1098SJ Amsterdam the Netherland

Summary

A protocol is presented that allows a set of parties to collectively perform any agreed
computation, where every party is able to choose secret inputs and venfy that the result-
ing output is correct, and where all secret inputs are optimally protected.

The protocol has the following properties:

0 One participant is allowed to hide his secrets tmcondirionally, i.e. the protocol
releases no Shannon information about these secrets. This means that a participant
with bounded resources can perform computations securely with a participant who
may have unlimited computing power. To the best of our knowledge, our protocol
is the first of its kind to provide this possibility.

The cost of our protocol is linear in the number of gates in a circuit performing the
computation, and in the number of participants. We believe it is conceptually
simpler and more efficient than other protocols solving related problems ([Yl],
[GoMiWi] and [GaHaYu]). It therefore leads to practical solutions of problems
involving small circuits.

The protocol is openly verifiable, i.e. any number of people can later come in and
rechallenge any participant to verify that no cheating has occurred.

The protocol is optimally secure against conspiracies: even if n - 1 out of the n par-
ticipants collude, they wil l not find out more about the remaining participants’
secrets than what they could already infer from their o m input and the public Out-
put.

0

0

C. Pomerance (Ed.): Advances in Cryptology - CRYPT0 ’87, LNCS 293, pp. 87-1 19, 1988.
0 Springer-Verlag Berlin Heidelberg 1988

aa

Each participant has a chance of undetected cheating that is ody exponentially
small in the amount of time and space needed for the protocol.

The protocol adapts easily, and with neghgibie extra cost, to various additional
requirements, e.g. making part of the output private to some participant, ensuring
that the participants learn the output simultaneously, etc.

Participants can prove relations between data used in ditferent instances of the pro-
tocol, even if those instances involve different groups of participants. For example,
it can be proved that the output of one computation was used as input to another,
without revealing more about this data.

The protocol can be usen as an essential tool in proving that all languages in IP
have zero knowledge proof systems, i.e. any statement which can be proved interac-
tively can also be proved in zero knowledge.

The rest of this paper is organised as follows: First we survey some related results.
c hen section 2 gives an intuitive-introduction to the protocol. ~n Section 3, we present
one of the main tools used in this paper: bit commitment schemes. Sections 4 and 5 con-
tain the notation, terminology, etc. used in the paper. In Section 6, the protocol k
presented, along with proofs of its security and correctness. In Section 7, we show how to
adapt the protocol to various extra requirements and dixuss some generalisations and
optimisations. Finally, Section 8 contains some remarks on how to construct zero
knowledge proof systems for any language in IP.

1. Related Work

The problem of multiparty secure computations is an important one. When stated in its
most general form, its solution implies a solution-at least a theoretical one0 almost any
protocol construction problem. The first to consider this problem was Yao[Y2]. He dev-
ised protocols, that under various cryptographc assumptions could keep the inputs secret
while allowing each participant only a neghgible chance of cheating. He did not, how-
ever, address the problem of “fairness”, i.e. ensuring that the participants learn the output
simultaneously. Later, Yaowl] solved also this problem for the two-party case.
Recently, in work done independently from (but earlier than) ours, Goldreich, Micah and
Wigderson[GoMiWi] used Yao’s two-party construction to devise a multiparty solution,
based on the existence of a trapdoor one-way function. Thls protocol implements a mul-
tiparty simulation of the computation in a circuit. Each participant holds a share of each
bit in the real computation, and these shares are manipulated by using Yao’s two party
construction 0 (n 2, times, where n is the number of participants. In other work done
independently from and almost simultaneously with OUTS, Galil, Haber and Yung general-
ise all the properties of Yao’s construction to the multiparty case, and simphfy the use of

89

Yao’s protocol in the multiparty simulation. Also, they give a concrete construction based
on Me-Hellman key exchange rather than the existence of a trapdoor one way function.
Very recently, Goldreich and Vainish [GoVa] found another simplification by designing a
special purpose two-party protocol which could replace Yao’s protocol in the multiparty
construction.

cept. It attacks the problem “directly”, without using Yao’s two-party protocol, and
without using reductions to 3-colorability [GoMiWi2] or to SAT [BrCr][Ch] to prove the
validity of messages. We rely on a stronger cryptographic assumption than [GoMiWi],
namely the Quadratic Residuoszy Assumption [GoMi]. T~Is, however, allows a simpler
and more efficient construction, capable of implementing all the “primitives for crypto-
graphic computations”, defined in [GaHaYu]. Although our protocol could also be based
only on the existence of a trapdoor one-way function, this would reduce the efficiency
considerably. Some of the techniques upon whch our protocol is based were previously
developed and used in the work of Chaum[Ch] and Brassard and Crepeau[BrCr]. By
specializing to the case where only one participant supplies the inputs, our protocol can
provide slightly more efficient solutions to the problems solved there.

An interesting consequence of our work is that any statement which can be proved
interactively, can also be proved in zero knowledge, provided that our cryptographic
assumption holds (one assumption which will do in this case is the existence of clawfree
trapdoor functions). More formally: any laguage in IP has a zero knowledge proof sys-
tem. This result was already proved for protocols with a constant number of rounds in
[GoMiWi2], where a proof of the result in full generality is attributed to Ben-Or. As far
as we know, this last proof is still unpublished, so we cannot comment on possible
differences between this proof and ours.

In comparison, our protocol solves the multiparty case using a totally different con-

2. Overview of the Construction

For the intuitive sketch given in this section, we wdl make some simplifications. We wil l
consider only two parties, A and B and we w d do a computation on one AND-gate only.
At the end of the section we will see how this method can be generalised to more parties,
and to a computation consisting of many gates.

Note that this AND-gate computation, where both parties want to hide their input
from eachother, has a meaningful application: consider the situation where Alice and Bob
have just met, and each considers dating the other. Niether wishes to loose face in the fol-
lowing sense: if Alice wants a date but Bob doesn’t, Alice does not want to let Bob know
that she wanted the date. And the same holds for Bob. In other words: if a party does
not want the date it does not find out the other party’s decision.

input and the output of the joint computation. This can never be avoided, however.
Note that sometimes a party can derive the other’s input just by combining h s own

90

The AND-gate is represented by a truth-table T. We will show what transforma-
tions A and B have to apply to T in order to compute the logical AND, such that

both parties can be sure (with very’high probability) that the transformations axe
done correctly;

both parties can keep their input hidden from the other party; and

both parties can be sure the result of the computation is correct.

THE PROTOCOL

1.1 A applies a randomly chosen permutation, uj, to the rows of T.

1.2 A chooses two bits b 1 and b3, and uses these to compute the XOR of the kth
column and bk. This procedure is known as inversion of columns.
A chooses four bits dl * * . d4, and computes the XOR of the lth entry in the last
column and dl. This procedure is known as encrypting the output column.

1.4 A encrypts bl,b3,dl . . . 6 4 in such a way that she cannot dsavow these values
later, while B cannot see what the value is without A’s help. This is known as com-
miting to the bits,

1.3

We will indicate the find result of these steps with F.
B will verify whether ?was constructed correctly in the next steps:

A creates a transformed truthtable T’ in exactly the same way as he created ?. 2.

Figure 1. Party A’s transformation of the AND-gate.
Note that all figures show the table uffer

the indicated operation has been performed.

91

3. B flips a coin.

- If the coin came out heads, A must reveal exactly how she constructed T', so that B
can venfy that this was done correctly.

- If the coin came out tails, A must show a special relation between T and T'.
Details on this can be found in Section 6.1. Here, it suffices to know that if the
relation holds, it implies that ? was correctly constructed if and only if T' was.

After m repetitions of steps 2 and 3, B is convinced with very high probability that A
constructed ?correctly. Now B will do to ? what A did to T, and even more:

4.1 B permutes the rows of ?, together with the commitments of the output column
entries.

Figure 2. The row-permutation performed by B.

Figure 3. The blinding.

92

4.2

4.3

B flips a coin for each output column entry and applies the XOR.

B computes, using A's bit commitment scheme, a commitment containing the XOR of
his own bit and the one chosen and committed to by A for this output column
entry. Although A can later open the resulting commitment, he will have no idea
which of his original commitments it was computed from. This requires special pro-
perties of the commitment scheme used.

This blinding is necessary to hide B s permutation. B also has to do a transformation
corresponding exactly to the one of A :

4.4

4.5

4.6

B chooses bits for inversion of his own input column, and for the output column.

B chooses bits for inversion of each output column entry.

B commits to the bits chosen in steps 4.4 and 4.5. He then sends his final result,
T", to A .

In the same way as in steps 2 and 3, B convinces A that T" was constructed 5.

Now A and B have together constructed a double-blinded version T' of the gate that
satisfies the conditions listed before step 1. They will use T* in performing the computa-
tion as follows:

COITeCtly.

6. Together they select the correct row of T" by announcing their choice of input bits
for T'. These input bits are the x-or sum of the "real" input bits and the inversion
bits for the corresponding columns.

A and B both reveal the inversion bit for the output column, and the inversion bit 7.

Figure 4. The find part of B s transformation.

93
Y

03

Figure 5. The computation.

for the entry in the output column which is in the selected row. By x-oring this out-
put column entry with the revealed inversion bits. they can both compute the bit
that is the result of the computation.

This basic protocol can be generalized in several ways:

Instead of using an AND-gate, any type of gate can be used.

Instead of two parties, any number of parties can participate in the protocol. Each
new party just has to follow B’s part of the protocol, and will thus have to blind the
commitments of each participant who went before.

Instead of using only one gate, a computation involving arbitrarily many gates can
be done with the protocol. The only condition is that when gate T1 is connected to
T2, then their conesponding output column and input column were inverted using
the same bits. When later a row is selected in the encrypted version of TI, the
inversion bits that apply to the single output column entry will be revealed, while
the coulumn inversion bits will remain secret. The revealed inversion bits are now
x-ored with the output column entry selected, and the result can be used directly as
an input bit to the encrypted version of T2.

3. Bit Commitment Schemes

A bit commitment scheme is a tool allowing protocol participant A to “commit’’ to a bit
b E (0,l) by releasing some information related to b such that:

-

-

She cannot later convincingly claim that b had the opposite value.

No other participant can h d the value of b unless A allows this (opens the commitment).

94

More formally, a bit commitment scheme is a family of finite sets

{ 1 m K = l
such that a member of I,,, is a pair of functions

f$?: R$ + S, and j$#: R$,? -+ S,,,

where R$$ and S, are finite sets, and the functions are polynomial (in m) time comput-
able.

value of the security parameter m outputs a member chosen randomly and uniformly
from I,,,.

To use the commitment scheme, A will choose an instance, i.e. she wi l l choose a
value of m, run Q and make m, j$$) and j$i) public.

To commit to a bit b, A chooses an element r uniformly in R',b' and makes public

Further, there exists a probabilistic polynomial time algorithm 9, which on input a

Below, we list the properties of bit commitment schemes, that are of interest in our
protocol:

Hiding the bit:

Let A be any probabilistic polynomial time algorithm which takes as input a com-
mitment BCSA,,,,(b,r) and gives a one bit output A(i3CS~,,(b,r)). Then for all con-
stants c,

IProb(A(BCSA,,(b,r))=b) - MI < nt-'
for all sufficiently large m. This holds for all but a fraction ~ (m) of the instances in
I,, and as a function of m, ~ (m) vanishes faster than any polynomial fraction.

Thus, guessing from a commitment which bit it contains is a hard problem. Note
that b must be uniquely determined from BCSA,,(b,r) and r, but not necessarily
from BCSA,,,,(b,r) alone. This also means that b may be impossible to find from a
commitment to b, even with infinite computing power.

Unforgeabiiity :

Let A be a probabilistic polynomial time algorithm which takes as input a commit-

95

ment BCSA,,(b,r), b and r, and gives as output an element i~ in It$@’). Then for
any constant c,

Prob(BCS~,,(b,r) = B C S ~ , , (b @ l , r h)) < m-‘

for all sufficiently large m. Again, this holds for all but a fraction c(m) of the
instances in I,, and as a function of m, c(m) vanishes faster than any polynomial
fraction.

Thus, it is not possible for a polynomially bounded A to lie about the contents of
her commitments. But note that an rA satisfymg the condition above may not exist
at all, in which case it is impossible to lie, even with infinite computing power.

Opening a commitment:

Given BcS~, , (b ,r) , A can convince anyone, that for a p e n value of b, she knows
an r which will produce the given commitment. Typically, she will just reveal r.

Comparabili y:

Given two commitments, BcS~, , (b , r> and B c S ~ , ~ (b ’ , r ’) , there exists a Minimum
Knowledge Interactive Proof (MKIP) by which A can convince anyone about the
value of beb‘ .

Blinding:

Given a commitment B c S ~ , , (b , r) , another participant, B, can choose b’E (0,l)
and compute from this a blinded commitment BCSA,,(b@b’,r’), where r’ is uni-
formly distributed in RLeb’. There exists a MKIP such that, given these two a m -
mitments, B can convince anyone about the value of b’.

Moreover, we require that given two commitments BCSA,,(~ @b’,r’) and
BCSA,,(b$b”,r”), which have been computed by B as above, there exists a MKIP
by which B can convince anyone about the value of (b@b’)@(b@b’’) = b’eb”.

Finally, it must be possible for A to open commitments which have been blinded as
above, just as if she had computed them herself.

From a theoretical point of view, the opening and comparability properties do not
represent demanding assumptions, since the required proofs can always be produced by
using standard reductions to 3COL or SAT ([GoMiWij, (Ch], [BrCr]). We will only be
concerned, however, with bit commitment schemes allowing the proofs to be produced
directly and efficiently. As a consequence, the main protocol will be much more e5cient.

3.1 Examples

The protocol presented in ths paper relies on the the existence of bit commitment
schemes satisfying the properties defined above. In h s subsection, we give three exam-

96

ples of commitment schemes, which could be used in the protocol, namely the Quadratic
Residuosity Scheme (QRS), the Jacobi Symbol Scheme (JSS) and the Discrete Log Scheme
(DLS), of which DLS has not been used in published protocols before.

p = q = - 1 m o d 4 . ShethenputsN=pq,R#) = R$,? = Z’ N, a d
S,,, = {x EZfr I (”) = 1 }. She makes public N and uses for example the zero knowledge

protocol from [PeGr] to convince everyone that N is of the right form. In particular, this
implies that - 1 is a quadratic nonresidue modulo N of Jacobi symbol 1. If we define

In QRS, A uses the algorithm !2 to select at random two m-bit primes,p and q with

N

f$) (r>= (- 1Pr2 mod N

it is easy to see that a commitment will contain a 1 if and only if the commitment is a
quadratic nonresidue modulo N .

ity crrsumption: it is hard, even probabilistically, to distinguish quadratic residues from
quadratic nonresidues modulo N (a formal statement can be found in [GoMi]). More-
over, even with infinite computing power, clearly A cannot lie about the contents of a
commitment.

The opening and comparability properties are easily verijied for QRS: A simply
makes public a square root modulo N of

The “hiding” condition above now translates into the well known quadratic residuos-

(- l)bBCSA,,,,(b,r) resp. (- l)b*b’BCS,,,(b,r)BCS~,m(b’,~~)-’.

These proofs will be MKIPs because the commitments were chosen by A herself at ran-
dom.

Blinding is also a simple process: having chosen b’, B computes the new commit-
ment as

(- l>b’s2BCS,,,(b,r) = BCSA,,(~ @b’,rs),

where s is randomly chosen from Zk. B can show the value of b’ by showing a square
root of

(- l)b’BCS,,,(b ~b’,rs)(Bcs,,,(b,r))-l,

which equals s. s is called the blindingfuctor.

Also, given two blinded commitments as above, B can show a square root of

(- l)b’* b” BCS,,,, (b C?3 b’, r ’)(B CSA , (b @ b ”, r ”)) -
to convince everyone about the value of b ’ e b ” .

compute square roots. But it is important to note that it will only be safe for her to do
Clearly, A can open any commitment by using her knowledge of the factors of N to

97

so, if she is convinced that she will always be opening blinded forms of commitments
chosen by herself: This wi l l be ensured by the construction of our main protocol.

In the JSS (first introduced by Blum in [Bl]), some participant B chooses a modulus
N of the same form as above, such that the jactorisation is unknown to A , and convinces
her as above that N was correctly chosen. We then put

I@ = {XEZ;) (“)=I}, N

RG) = {X€Z;,I (-)= X -l}, N

and S, = QR(N) ,

where QR(N) denotes the set of quadratic residues moddo N. Finally, we set

I(mb)(r) = r2 mod N ,

where r E Rg).

square roots of Jacobi symbol + 1 and two of Jacobi symbol - 1, release by A of
BCSA,m(b,r) gives away no Shannon information about b. On the other hand, the unfor-
geability property only holds conditionally here: if A could factor N , she could lie about
the value of b.

$ 1 = BCSA,,(b,r) and s2 = BCSA,,(b’,r’), A can make public a square root of s i(sz)-’
of Jacobi symbol (-
this is st i l l information theoretically secure: after having seen a proof that b$b’ = 1, say,
the two possibilities (b,b’) = (1,O) and (b,b’) = (0,l) remain equally likely, even to some-
one who knows the factorisation of N .

This scheme hides the bits unconditionally: Since each square modulo N has two

JSS also satisfies the comparability property: Given two commitments

to convince everybody about the value of b$b’. Note that

Note that if A is going to commit to bits using JSS in a multiparty protocol, every
participant except A must supply a Werent modulus, and when committing to a bit, A
must make public a set of commitments to this bit, one for each modulus supplied. This
is to prevent the possibility that A breaks the unforgeabllity property by conspiring with
somebody who knows the factorisations. This of course means that the other participants
must be convinced that the same bit is contained in a l l commitments in a given set. For-
tunately, the construction of our main protocol is such that this is automatically ensured,
whenever JSS is used.

Note also that if absolute certainty is needed about the correctness of the choice of
N , B could be required to simply reveal the factorisation of N after the protocol has been
executed. It would be too late for A by then to use this knowledge in the protocol.
Another possibility is for B to prove to A in zero knowledge that the modulus has the

98

right form. However, all the known proofs of this leave an exponentially small probabil-
ity that B’s claim is false, in which case A would be giving away information about her
secrets. Thus it seems that with this scheme, A will never be quite sure that her secrets
have not been betrayed until after it happened!

an m-bit p r h e p , a generator g of Zi, and an element u EZ; at random and reveals them
to A. We now put RG) = R‘,O) = Sm = Z;, and

The next example, the Discrete Log Scheme, solves this problem. Here, B chooses

This scheme also hides the bits unconditionally, since the bit contained in a com-
mitment is not Uniquely determined, if the random choice made by A is unknown. Note
that ifp is determined such that the factorisation of p - 1 is known, A can easily check
for herself that p is a prime and that g is a generator.

To open a commitment, A must show the discrete log base g of

-
bBCsA,m(b,r),

namely r. It is also easy to see that the unforgeability property holds, assuming that A
cannot find the discrete log of u.

Given two commitments BCSA,,(b,r) and BCSA,m(b’,r3, A can prove that
b@b’=O by showing the discrete log of

BCSA, rn (b, r) (BCSA,m (b’~ r’))-
and to show that b@b’= 1, she shows the lscrete log of

(I - ‘BCsA,,(b,r)BCsA,,(b‘,r/).
Once again, it is easy to see that A cannot make a false claim about b@b’ unless she can
find the discrete log of a.

multiparty application that every participant different from A chooses his own instance,
and that A then must commit to a bit “in parallel” using all the published instances.
Since there is no trapdoor present in DLS, all participants can collaborate in choosingp,
g and a, using some multiparty coinflipping protocol.

An additional advantage of DLS compared to JSS is that it is not necessary in a

4. Protocols: notation and definitions

We think of a protocol as occurring among a set of communicating probabilistic Turing
machines (PI, . . . , P,} called the participants. The protocol is described as a
specification of the program each participant should follow.

99

Each machine has private input, output and random tapes, and one communication
tape. The contents of the input tape of P, is called i p i , the contents of the output tape
after execution of the protocol is called opi. All machines are clocked by a common
clock, and the protocol proceeds in rounds. In each round, exactly one machine can do
some computation and perhaps write a message on the other machines’ communication
tapes. By definition, all messages sent in the protocol are written simultaneously on all
communication tapes. If a machine receives a message which does not obey the con-
straints specified in the protocol, it stops immediately, and we say that cheating has been
detected

We assume the existence of a mutually trusted source of random bits. Such a
source could easily be implemented using e.g. Blum’s coin fipping protocol [Bl]. But
since the construction of such a subprotocol is independent of oux main protocol, we have
chosen to abstract away the fact that a subprotocol is used.

The protocol takes some global input, known to all machines:

A specification of the computation to be performed, in the form of a boolean circuit
C.

The cryptographic security parameter m.

Note that the security and the certainty of correctness may be varied independently
of the complexity of the computation modelled by C. Moreover, the protocol never uses
any special properties of C, such as membership of a polynomial size family. For these
reasons, we look at C just as a single fixed circuit.

Of course, this does not mean that the behaviour of e.g. the running time of the
protocol as a function of the size of C is not interesting, only that such dependencies
should be considered independently of the security level.

0

0

4.1 Correctness and Security

The definitions in t h ~ s section are straightforward generalisations of the definition of “zero
knowledge proof systems” found in [GoMiRa]. This becomes clear if one takes a slightly
different point of view of the situation where a prover convinces a verifier about the
membership of a string x in an NP-language L:

In fact the prover and the verifier are doing an interactive computation, where only
the prover supplies input, namely a certificate of membership for x. The notion of
correctness of the protocol they execute corresponds to the fact that we have a proof sys-
tem: we want the protocol to produce the correct output of the computation, namely
“accept” if indeed the prover put in a valid certificate of membership for x. The notion
of security corresponds to the fact that the proof system is zero knowledge: we want the
verifier to gain nothing useful about the secrets of the prover, other than the fact that x is
in L.

100

If we model the computation needed to verify membership for x by a boolean cir-
cuit C, it is clear that this is just a special case of the general problem addressed in this
Paper.

We allow C to be a probabilistic circuit, i.e. take as input a number of bits chosen
uniformly from {0,1}. Thus, given the inputs I =(@ 1, . . . , ipn), C determines a probabil-
ity distribution OPf on the output. We assume for simplicity that the output is public,
i.e. the same output string will appear on the output tape of any participant following
the protocol (the generalisation to different (private) outputs is easy and will be discussed
later). Given a choice of inputs as above, we let OPf$ denote the probability distribu-
tion according to which the output string of a participant following the protocol is distri-
buted, when the protocol is executed with security parameter value m and no cheating is
detected. We would like this distribution to be essentially equal to OPf. In other words,
the only way for (a set of) dishonest participant(s) to prevent the correct result from being
computed is to stop the protocol e.g. by deliberately sending an incorrect message.

We let OPf(op) (resp. OP!?r$(op)) denote the probability that the binary string op is
produced as output.

Definition 4.1.

any binary string op and constant c,
A protocol is said to be correct if for any choice of inputs I = (ip 1, . . . , ipn), and

A campiracy is a subset X of (P 1 , . . . , P,,} with I X 1 < n. The machines in a con-
spiracy may follow any (polynomial time) program, and they may establish private com-
munication channels to share all the information available to them.

Intuitively we will consider the protocol secure if no conspiracy will learn more
from the protocol, than what could already have been inferred from the output of the
computation and the part of the input known to the conspiracy.

To state this more formally, we need some definitions:

The binary string, which is the concatenation of all messages sent during an execu-

Let ru be a binary string containing as many bits as there are random input bits to

tion of the protocol, is called aprotocol conversation.

C. Then byfc(ip1, . . . , ip,,ra) we denote the output of C resuiting from inputs
(i p l , . . . ,@,,) and random choice ru.

which a protocol conversation with security parameter m and inputs (ip 1, . . . , &,ru) is
distributed.

We let P$&ip 1, . . . , ipn,ra) denote the probability distribution according to

Note that this distribution is conditional on the programs followed by the machines

101

in X, i.e. the conspiracy's strategy. Note also that the defjnition talks about the inputs of
machines in X. This is not necessarily a meaningful concept: nothing prevents a dishonest
participant from pretending that the contents of its input tape is different from what in
fact it is. This "problem" is easily solved, however, if we jump ahead in the protocol
description a little: Each participant must publish bit commitments, which determine a
particular choice of input. We therefore define the input of a participant to be the bit-
string committed to during the execution of the protocol.

A simulator for X is a polynomial time Turing machine Mx, which on input
(m, fc(ip1, . . . ,&,fa), { ip i I Pi EX}) will generate a protocol conversation distributed
according to the distribution P@iVc(ipl, . . . ,ipn,ra), {ipi I Pi EX)).

Debition 4.2.

The protocol is said to be secure against the cornpiracy X, if there exists a simulator
for X, Mx, such that for my (i p 1, . . . , ipn) and ra, the two ensembles of probability dis-
tributions

and

o , (i p 1 , . . . ,@n,ra)},"=1
are polynomiaUy (in m) indistinguisable0

We assume that the reader is familiar with this notion. For details, refer to

The protocol is said to be secure, if it is secure against any conspiracy.

This definition means that no matter which type of hostile behaviour is exhibited by

[GoMiRa].

X, the private inputs of all honest participants and the random inputs are optimally pro-
tected. But note that proving the protocol secure under this definition does not exclude
the possibility that a conspiracy, by stopping the protocol in some clever way, could find
out about the output, while preventing honest participants from getting it. The basic pro-
tocol as described in section 5 already offers protection against this, but a lot of variations
on the theme are possible. More details wil l be given in Section 6.

5. Circuits, terminology and notation

We think of a boolean circuit C in the usual way as an acyclic duected graph, the nodes
are called gates, the edges are called wires.

If it leaves a gate without connecting into another, we call it an output wire.
A wire may be connected only into a gate, in which case it is called an input wire.

102

The input wires are partitioned into n + 1 disjoint subsets, I1, . . . ,I,, R. I j
corresponds to the secret input chosen by Pi, such that @, contains one bit for each wire
in I j . In a similar way, R corresponds to the random inputs to C.

For each gate, a function is specified that maps the input bits to a one bit output.
For the gate G, this function is given by the truth table T(G). T(G) is a 0- 1 matrix with
t + 1 columns and 2‘ rows, where t is the number of wires connecting into G. The rows,
apart from the last entry, contain each possible assignment of bits to the input of G
exactly once, and the last column contains the corresponding output bits. Note that each
input column in each truth table corresponds to exactly one wire in C, and that an output
column may correspond to any number of wires (“fan-out” from a gate is allowed). Thu,
two columns may correspond to the same wire. Two such columns are said to be con-
nected

Definition 5.1.

A computation r in C consists of a selection of exactly one row in each truth table.
The input ofr is the corresponding assignment of bits to the input wires of C, the output
ofr is the corresponding assignment of bits to the output wires.

truthtable-columns c 1 and c2 are connected, the entry selected by r in c 1 equals the
entry selected in c 2 0

A computation is said to be consistent, if the following is satisfied: whenever two

2 Transformations of Truthtables

Our protocol works with “transforms” of truthtables. Basically, a transform of a trutht-
able T(G) is just a row-permuted version of T(G) with the last column changed and some
extra (encrypted) information about the transformation included.

Definition 5.2.

Let G be a gate in C with t input wires. For i = 1 . . . n, we define an i-transform T
o fT (G) to be a (t + 1) by 2‘, 0- 1 matrix with a list of bit commitments attached to each
row and each column. The list attached to row I is called rlisf(l,T). The list attached to
column k is called clist (k, r).

Each list contains one commitment from each participant Pi, for which j < i , except
clist(k,T), when the Kth column corresponds to an input wire in some I / . These lists are
empty i f j > i , and contain one bit commitment from PI if j <z.

By rsurn(1,r) (resp. csum(k,r)) we denote the x-or sum of all bits committed to in
rlist (1, T) (resp. clist (k, 0). The s u m of an empty list is defined to be 0.

A 0-transform of T(G) is defined to be simply T(G) itself0

Most of the work done in the protocol by P, wdl consist of receiving (i - 1)-

103

transforms and from these creating i-transforms. We require that there is some specific
relation between a truthtable T (G) and its transforms used in the protocol. When this
relation holds, the transform is said to be valid A valid transform can be seen as an
encrypted version of T(G): the rows are permuted, and each column is x-ored with an
independently chosen bit. In addition to thq the last entry in each row is x-ored with an
independently chosen bit. The attached lists of bit commitments (when opened) contain
complete information about how the transform was constructed. More specifically we
have the following:

Definition 53.
A valid i-tramform T of T(G) is an i-transform of T(G) which satisfies that:

There exists a permutation u of { 1, . . . ,2'} such that:

6. The Protocol

The first step in the protocol is that each participant chooses an instance of a bit commit-
ment scheme and uses the protocols mentioned in Section 2 to convince all other partici-
pants that the choice was made correctly. We assume for simplicity that all participants
use the same value of rn as security parameter, but in principle, merent participants
could choose different levels of security.

The commitment scheme chosen by participant P, is called BCSi.

All commitment schemes BCSi with i < n must satisfy all properties defined in Sec-
tion 2, so they
properties from Section 2, except the blinding property, so it could be an instance of JSS
or DLS.

be instances of QRS, but not of JSS or DLS. c, must satisfy all the

The mairr part of the protocol proceeds in two phases: 1) The Encryption Phase and
2) The Computation Phase. Each is described formally in separate subsections below.

6.1 The Encryption Phase

The procedure TRANSFORM CIRCUIT below is iterated once by each participant, such that
the i'th iteration is executed by Pi. After each iteration the protocol CHECK TRANSFOR-
MATION is executed to verify that the preceding iteration of TRANSFORM CIRCUIT has
been performed correctly. The input to the first iteration will be the truthtables in the
original circuit.

104

PROCEDURE TRANSFORM CIRCUIT.

Input: in the i'th iteration, one (i - I)-tramform of each truthtable in C. Output: one i- -
transform of each truthtable in C.

For each (i - 1)-transform S s u p p w in the input, do the following:

1) Suppose the corresponding gate in C has t input wires, so that S has 2' rows and
t + I columns. Choose a permutation IJ of { 1, . . . ,2'} at random and apply u to
the rows of S with attached lists. Call the result T.

2) For1=1.-.2',andeachj<i,do:

choose a bit sq(1, r> E (0,l) at random and x-or the last entry in the Pth row of T
with qj(f,T). Find the commitment

BCS,(bi(l, T),rj(l, T)) E rlist (1, T),

and use the blinding property of BCS, to replace this commitment with

3) F o r k = l - . , t + I do:

if the kth column in T does not correspond to an input wire in I;, then do nothing.

otherwise, choose a bit bi(k, T) E (0,l) in the following way: If column k in T is
connected to another column in another transform for which a bit b has already
been chosen, then put bi(k,r>=b. Otherwise, choose b&T) at random. Now x-or
all entries in the K t h column of T with bi(k, T), and append to clist (k, r) a commit-
ment

4) For 1 = 1 . - 2' do:

choose a bit bi(1,T)E (0,l) at random, x-or the last entry in the tth row of T with
bi(I,T), and append to dist (I , T) a commitment

Notice that the special way of choosing b&T) in step 3 ensures that whenever two
columns are connected, the contents of the corresponding column lists will be identical.

The purpose of step 2 is to hide the row permutation u. The blinding in this step
ensures that the contents of the row lists in S and Tare statistically independent, so that
no information about u is revealed by the row lists. The reader may have noticed that
information about u is revealed by the contents of the input columns in T. But since each

105

such column contains as many 0's as 13, a particular entry in a column still has the same
probability of being the encryption of a 1 as of a 0, if the bit x-ored into the column by
Pi is unknown. This will be sufficient to make the protocol secure, as we shall see.

follows:
The interactive proof that every T was created according to the protocol proceeds as

PROTOCOL CHECK TRANSFORMATION

Input: For every truthtable in C, an (i - 1)-transform S and M i-transform T, which Pi
claims was created correctlyfrom S.

1) For every corresponding pair (S,T) in the input, Pi creates from S another i-
transform T' in exactly the same way as T, but with new independent choices of
permutation and bits. T' is made public.

The mutually trusted source of random bits chooses b E (0,l) at random.

If b = 1, Pi must for every T': make public the row permutation used for creating
T', open all his bit commitments attached to T', and reveal all blindhg factors (see
Section 2) he used in blinding other commitments. This allows everybody to check
that T' was correctly constructed.

If b =O, Pi must show for all corresponding (T,T') a relation between T and T':

Pi makes public the permutation T=u(u')-~, where u (resp. 0') is the permutation
used in creating T (resp. TI).

For k = 1 - * * t + I : if Pi appended commitments to clist (k, T) and clist (k , T'), Pi
uses comparability of BCSi to show from his commitments the value of

2)

3)

4)

bi(k, T)@bj(k, T').

For I = 1 * . 2', Pi uses comparabihty of his commitments in rlzst (I , T) and
rlist(lz(I), T') to show the value of

For I = 1 . . . 2', and each j <i, Pi uses the blinding property of BCSj to show the
value of

This allows everybody to check that the following holds:

Tik = T'~.lyc CBcsum (k , T)@csum (k , TI), if k < t + l ,

Tik = yn(fp ecsum (k , T)@csum (k , T')@rsum (l, T)@rsum (~ (l) , T'), if k = t + 1.

106

Steps 1 - 4 are repeated m times.

Theorem 6.1.

For every i = 1 - - * n, the probability that PI has cheated (i.e. sent incorrect mes-
sages) anywhere in the protocol without this being detected is smaller than m - c for any
constant c and all sufilciently large m. If no cheating OCCUTS, then the encryption phase
ends with P,, outputting a valid n-transform of every truthtable in C.

Proof.
It is not hard to see that if for at least one iteration in the CHECK TRANSFORMA-

TION protocol, Pi W ~ S able to give satisfying answers in both steps 3 and 4, and if Pi was
not able to change the contents of his bit commitments, then T must have been correctly
constructed. This and the unforgeability property of all bit commitment schemes used
suffices to prove the first statement. The second follows from the obvious fact that if T
was created correctly from S in the TRANSFORM CIRCUIT protocol, then T is valid if S
was validU

If all participants use QRS for bit commitments, then the unforgeability property
holds unconditionally for dl participants, which means that the probability of undetected
cheating will be at most 2-m.

Intuitively, the CHECK TRANSFORMATION protocol is secure from Pi’s point of
view because all the other participants never see anythmg but random “copies” of S or T,
which they could also have produced themselves. All other participants will therefore be
convinced that T was correctly constructed, but will learn nothing more about T. A for-
mal proof can be found in Section 6.3.

6.2 The Computation Phase

At the end of the encryption phase, P, has output a set of n-transforms of the truthtables
in C. This set will be called C*.

Let w be an input wire in C connecting into the gate G, and suppose w corresponds

As the first step in the computation phase, encvpted input bits are specified for each

to column k in T(G) . Let T’ be the n-transform of T(G) contained in C*.

such w. This is done as follows:

if w ER, then the mutually trusted source of random bits selects a bit b,, whch is made
public.

if w Eli for some i, PI reads a bit b in ipl corresponding to w from its private input tape,
and then makes b, = b @bi(k, T’) public.

of computations in C* .
To describe the next steps in the computation phase, we need to define the notion

107

Definition 6.1.

By a computation r' in C', we mean a selection of exactly one row in each n-
transform in c' .

A computation r' is said to be consistent, if the following is satisfied:

Suppose output column kl in the transform T; is connected with column k2 in the
transform T i , and let T'(k1) and r ' (k2) be the entries selected by r* in the two
columns. Then

r * (k l) $ r s u m (I I , T 1) = r*(kZ),

where I 1 is the index of the row selected by I" in f i

assume that all transforms in C' are valid, then the selection of a row in a table T'
corresponds to selecting a row in the original truthtable, under the product of all row per-
mutations chosen for T' by the participants. Therefore, a computation in C*
corresponds to a computation in C. Moreover, the consistency condition on a computa-
tion in C' just says that if we look at the string of bits selected in the computation and
"remove" all layers of encryption, then the consistency condition as defined in Section 5
holds for the computation in C (note that by construction of the n-transforms in C',
csum (k 1 , fi) = am (k2, T f 2)) . Formally, we have the following:

Given an n-transform T' in C * , let ui be the row permutation chosen by partici-
pant Pi for T'. If r' is a computation in C' selecting row I in T', then we define the
corresponding computation r in C by selecting row (a, . * q) - ' (l) in the original trutht-
able.

The intuition behind these rather technical looking definitions is very simple: if we

Lemma 6.2

the corresponding computation r in C is consistent if and only if I" is consistent.
Let r* be a computation in C* and suppose all transforms in C* are valid. Then

The rest of the protocol is now just an algorithm which constructs a consistent com-
putation in C* from the input as specified above.

PROCEDURE CONSTRUCT COMPUTATION

Input: The fur@ encrypted circuit C* and for each input wire w an attached input bit b,
specified as above. Output: A consistent cornputation I" in C' and its output.

1) Mark every input wire.

2) For every gate G for which all input wires are marked, do the following:

Let T' be the n-transform in C' of T(G). Let 1 be the index of the row in T * ,
whose first entries match the bits attached to the input wires of G, and let bl be the

108

last entry in this row.

Record row number 1 as selected by r*. Open all bit commitments in rlist(Z, T*),
and put

3) For every wire w connecting out of G, mark w and attach to it

b, = by.

4)

5)

If any wires in C are still unmarked, go to Step 2).

For every output wire w, do the following:

suppose w corresponds to output column k in T * . Then open all commitments in
clisi(k,T*), and compute the final result for ths wire as:

Result (w) = b, $csum (k, T’).

The reader can easily venfy that if all participants supply the information needed in
step 2, then the procedure runs in time linear in the number of gates in C, and constructs
a consistent computation I“. Furthermore, it is easy to see that step 5 above in fact pro-
duces the output of the computation in C corresponding to I?.

6.3 Proofs of Correctness and Security

Before starting on this section, the reader is well advised to review the definitions of
correctness and security given in Section 4.1.

Using the results proved in preceding sections, it is now not hard to prove

Thmrem 6 3

The protocol is correct, as defined in definition 4.1.

Proof

First note that for each input wire w in R, the input bit given to C is the x-or sum
of one bit chosen by the mutually trusted random source, and one bit chosen by each
participant (namely the bit committed to in the clist corresponding to w). By Lemma 6.2,
this means that the conditional probability distribution of the output of the protocol
assuming that no cheating has occurred, is exactly equal to the “right” probability distri-
bution OPh, for any choice I of inputs. The theorem now follows from Theorem 6.1 and
elementary probability theory0

To show that the protocol is secure, we assume the existence of some conspiracy X .

109

We must then exhibit a simulator M x for X and prove that its output is polynomially
indistinguisable from an actual protocol conversation. Only informal descriptions will be
given, we trust that this wil l make the proofs easier to understand, and that the reader
wil l have no trouble in filling in the necessary details.

We begin with the description of the simulator Mx:

Recall that MX is given as input the security parameter value m, the output of a
“real” computation fc(@ 1 , . . . , ipn,ru), and the part of the input “known” to X,
(ipi I Pi EX). In addition to this, MX is of course allowed to use the machines in X in
any (feasible) way it likes. We will describe the algorithm of MX as a simulated protocol
execution, where the participants in X act “as themselves” and MX plays the parts of all
other participants.

Mx starts by putting ipi on the input tape of P, for every Pi EX. Also, the random
tapes of all machines in X are fled in using MX’S own random tape. This means that all
the machines in X are “deterministic” from now on.

therefore chooses a modulus Ni for all participants Pi not in the conspiracy, while the
participants in X choose their own moduli. Although this means that Mx in fact knows
some of the factorisations involved, it is of course essential that this is not used in the
simulation!

Next, Mx executes a simulation of the proof that Ni is a Blum integer, for every
i = 1 - - * n. When i is such that Pi EX, Pi can be used directly as the prover, otherwise
the simulation from [GrPe] can be used.

then the i’th iteration of this procedure is replaced by an execution of the procedure
SIMULATE CONSPIRACY below, otherwise the procedure SIMULATE HONEST PARTICI-
PANT is used.

For simplicity, we assume that all participants use QRS for bit commitments. Mx

We now come to the executions of the TRANSFORM CIRCUIT procedure. If Pi EX,

PROCEDURE SIMULATE HONEST PARTICIPANT.

Input: one (i-1)-transform of eve9 truthtable in C. Output: one (i-1)-transform of evey
truthtable in C.

i) For every (i - 1)-transform S supplied in the input, which does not correspond to
an output gate, MX creates an i-transform T exactly according to the protocol.

For every (i - 1)-transform S corresponding to an output gate, an i-transform T is
created in exactly the same way as in step i. In addition to this, the following is
done:

Recall that for each output gate G of C, a bit b~ is specified in the input to Mx, as
part of the given value of fc(ip1, . . . ,ipn,ra). The simulated computation must
produce this bit as output from G. This is ensured by simply multiplwg the com-
mitment from Pi in some of the row lists by - 1. so that the last column of T

ii)

110

becomes an encryption of a column With all entries equal to bG.

Note that the above modification only has to be done once, even if the simulation is
done with more than one honest participant.

%) To simulate the CHECK TRANSFORMATION protocol, MX chooses bM E {O, 1 } at
random. If bM = 1, a set of T”s is created as valid transforms from the ss, Other-
wise, the T”s are created from the Ts as randomly chosen i-transforms such that
step 4 in the CHECK TRANSFORMATION protocol can be executed.

iv) The trusted source outputs a bit b. If b = b M , M X just executes step 3 in the
CHECK TRANSFORMATION protocol if b = 1, and step 4 if b =O. This is possible
by construction of T’. Otherwise, M x rewinds all machines in X to their
configuration just after the last execution of step ii. We then go back to step iii and
try again With a new independent choice of bM and T’.

Steps iii and iv are repeated until step iv has been successful rn times.

Note that the expected number of “trial Ys”, we must create in the above pro-
cedure before b happens to be equal to b M is constant, and that the above procedure
therefore takes expected linear time in M.

PROCEDURE SIMULATE CONSPIRACY.

Input: one (i-1)-transform of every truthtable in C. Output: one i-tramform of every trutht-
able in C.

i)

ii)

Mx uses Pi to compute an i-transform T of every (i-1)-transform S in the input.

The first round of the CHECK TRANSFORMATION protocol is executed as follows:
step 1 is executed only once, but steps 2-4 are executed several times, rewinding P,
after each iteration. This goes on until Pi has shown both that T is equivalent to T’,
and that T’ was correctly constructed. If either proof is not valid, the simulator
stops.

The reader can easlly venfy that having seen both proofs, MX can find out exactly
how T was constructed from S. In particular, all the blinding factors used by P,
can be found. This means that M X can now open all bit commitments used sofar
in the simulation, without making further use of the machines in the conspiracy.

iii) The rest of the rounds in the CHECK TRANSFORMATION protocol are executed
exactly as in an actual protocol execution.

Once again, it is easy to see that the above procedure takes expected polynomial

In the computation phase, MX lets all the machtnes in X specify their encrypted
choice of input bits, and specities randomly chosen bits for all other participants. It is
now easy to see that the CONSTRUCT COMPUTATION procedure can be executed exactly

time.

111

as in the protocol: By the remarks in the SIMULATE CONSPIRACY procedure, Mx has all
the information it needs to open all bit commitments from participants not in X.

the set of messages sent by participant Pi in the protocol, and suppose P, is honest. It is
easy to see that the bits shown “in clear” in these mesages will be distributed in exactly
the same way in the simulation as in an actual protocol conversation. The difference
between simulation and protocol therefore lies only in the distribution of the bits hidden
in Pi’s bit commitments. It is intuitively clear that to notice this difference, a dish-
guisher would need the ability to tell the ditrerence between commitments containing 0’s
and those containing 1’s. But by assumption, this cannot be done efficiently. This argu-
ment is formalised below.

Why does this simulation look just like a “real” protocol conversation? Consider

Theorem 6.4.

The protocol is secure.

Proof.

It remains to be shown that the output of the simulator described above is polyno-
mially indistinguishable from an actual protocol conversation. For simplicity, we will
only do this in the case where n - 1 participants conspire against one honest participant
Pi. Cases with smaller conspiracies are in principle similar and introduce only technical
differences.

Recall that a polynomial time distinguisher A is a probabilistic polynomial time
algorithm which takes as input a binary string and gives a one bit output. Let pprot(m) be
the probability that A outputs a 1 when given an actual protocol conversation with secu-
rity parameter m as input. Similarly,p,i,(m) is the probability that A outputs a 1 when
given a simulated conversation created as above. By way of contradiction, we assume
that there exists a choice of inputs (@ 1, . . . , ip,,ru) which will result in distinguishable
protocol and simulated conversations, i.e. there exists a constant c, such that

Ipprot(m)-psim(m> I > m -‘ (1)

for infinitely many m.

Below, we will derive a contradiction with the quadratic residuosity assumption by
showing how to use A to construct an algorithm that will distinguish quadratic residues
from non residues modulo a Blum integer N , whenever N has m-bit prime factors, and m
satisfies the above equation. Let us therefore assume that we are given an element x in
Z; of Jacobi symbol 1.

Below, we will describe a polynomial time Turing machine Mx’, which on input
(ip 1, . . . , @,,ru) and x chosen as above will generate a conversation. This conversation
wil l be a “real” protocol conversation if x is a quadratic residue, and it will be distributed
exactly as a simulated one if x is a quadratic nonresidue.

The description of Mx‘ i s easy, based on the al~or i thm of Mx: Mx‘ assigns N as

112

modulus to Pi, and then works exactly as M x , except for steps i and ii in the SIMULATE
HONEST PARTICIPANT procedure. In step i, Mx' will: for each commitment placed by P,
in an input column list choose a bit b at random and multiply the commitment by x b .
To see why this is done, observe that in a real protocol conversation the bits used in the
(encrypted) computation and the bits contained in column lists are correlated: they all-
ways x-or together to the bits used in the unencrypted computation. If x is a quadratic
nonresidue, this correlation is destroyed by the multiplications by x , corresponding to the
fact that we should be producing a simulated conversation in this case. The resulting
transformation, however, is no longer valid. Since both simulation and protocol coversa-
tions produce valid transforms for non output gates, we have to do something about this.
But it is not hard to see that the correctness of the transform can be ensured by also mul-
tiplying appropriately chosen commitments in row lists and output column list by x.
Note that Mx' Wiu know how to this, since it knows exactly how every transform was
computed. Finally in step ii, the multiplications by - 1 are replaced by multiplications
by x .

In the computation phase, Mx' specifies inputs for P, according to the protocol, i.e
as if the x's had not been multiplied in. The reader may have observed that a problem
could arise here: To complete this phase, Mx' must be able to open some of the commit-
ments from Pi placed in row lists. But this is of course impossible if the commitment has
been multiplied by x. Note, however, that since all inputs are known to Mx', it is known
which rows will be used in the compuation in C, and therefore it can be predicted which
rows will be used in the encrypted computation. This, together with the observation that
the necessary ajustments above can always be done while leaving at least one row
untuched, solves the problem.

Now observe, that if x is a quadratic residue, multip1)ing a commitment by x does
not change the bit contained in the commitment, while if x is quadratic nonresidue, the
bit is complemented. Using this fact, it is straightforward to check that the claim above
about the output of Mx' holds.

Letg,,(m I N) be the probability that A outputs a 1 when given as input a protocol
conversation in which Pi chooses N as modulus. p,,,(m I .V) is defined similarly. An easy
calculation will show that (1) implies

lpprodm IN) - psi,(" IN1 > m - c f l (2)
for infinitely many m and for more than a neghgible (i.e. polynomial) fraction of the pos-
sible choices of N . Elementary probability theory now shows that if x is a randomly
chosen element in Z& of Jacobi symbol 1, then we can guess whether x is a quadratic
residue with an advantage polynomially larger than 'h, whenever (2) holds. But this con-
tradicts the hiding property of QRS, i.e. the intractability assumption on the quadratic
residuosity problem 0

113

Theorem 6.5.

If Pn is honest and uses DLS for bit commitments, then the protocol releases no
information in the Shannon sense about the private input of Pn and all intermediate
results in the computation.

Proof.

Since DLS hides the bits unconditionally, it is easy to see that the protocol provides
even a conspiracy consisting of all other participants with nothing more than the string of
input bits and intermediate results, encrypted under a true one-time pad0

A similar result holds if Pn uses JSS, assuming that the moduli used are of the right
form. Since the known interactive proofs of this would leave a small probability that this
is not SO, Pn would on the average be releasing an exponentially small amount of infor-
mation when using JSS.

7. Generalizations

In this section, we will show how to adopt the protocol to various additional require-
ments. It will be shown that a very flexible functionahty can obtained from a general
computation protocol, as long as it protects the private inputs, computes correct results,
and allows execution of coordinated instances, i.e. participants can prove relations between
inputs and outputs used in different instances of the protocol. In particular, a protocol
which implements the “input-secure computation”-primitive as defined in [GaHaYu] and
allows coordinated instances can in fact implement all four “primitives for cryptographic
computation” defined in [GaHaYu]. From the comparability property of the bit commit-
ment schemes used, it is clear that our basic protocol satisfies these requirements.

7.1 Private Outputs

How can we make some of the output bits private to a participant Pi? First, note that
this problem could always be solved by rewriting the circuit, such that each of the output
bits in question were x-ored with a bit chosen at random by the participant.

With our protocol, however, t h s is not needed: we can just modify the protocol
such that Pi is not required to open his bit commitments corresponding to the output
wires in question. The proof of security could easily be modified to take this into
account: just note that if some output bits are private to a participant not belonging to a
conspiracy, then the simulation can be done without knowing these bits.

7.2 Simultaneous Release of the Output

An obvious strateg for a set of dshonest participants would be to try stopping the pro-
tocol early in such a way that this conspiracy could find out about the output while

114

preventing honest participants from getting it. To solve this problem in general, one
could just execute a set of coordinated instances, such that the input was constant over a l l
rounds, while the circuit was rewritten such that exactly one bit of the result was com-
puted in each instance.

the “encryptions” of the output columns are opened for one column at a time. Thus,
each participant will never have more than a one bit advantage over any other partici-
pant. Also this statement could be incorporated into the formal security proof: loosely
speaking, if the protocol stops without computing the complete result, then the simulation
can be done without knowing all output bits.

by bit release does not make sense because the private outputs may have ditrerent lengths.
We propose instead the following solution, the basic idea of which was first introduced by
Yao in Wl]: The parties agree on a probabilistic circuit, which will produce as output an
instance of a bit commitment scheme based on a trapdoor one way function, e.g an
instance of QRS, together with the trapdoor information. Our basic protocol can now be
used to do a computation in this circuit. The parties open the specification of the
instance, such that commitments can be computed, but keep the trapdoor closed. In the
case of QRS, this would mean that a public modulus has been computed, but its factori-
sation is still unknown to everyone. Since all coinflips in the computation are secret, no
participant can compute the trapdoor information by himself. The parties now go back
to the original circuit and do the computation, using the bit commitment instance com-
puted above for all commitments in output column lists. When this is done, the trapdoor
information is opened, bit by bit, which is possible by the above remarks. Using Yao’s
terminology, this is a fair protocol because all participants need exactly the same informa-
tion in order to get their share of the output.

Note, however, that our basic protocol already implements a bit by bit release, since

If simultaneous release is to be combined with private outputs, however, then a bit

7.3 Other Special Requirements

Since our basic protocol protects not only the inputs, but also all intermediate results, a
variety of special properties can be obtained by rewriting the circuit. For example, the
result could be distributed only to a secret subset of users, the subset being chosen at ran-
dom or based on the result. Also, a secret permutation could be applied to the private
output of some participant to hide the order in which he obtains his output bits. This
could important, e.g in the implementation of a game such as poker.

7.4 Verifiability

Is it possible for a non participant to check from, say, a recording of all messages sent in
the protocol that the result computed is a correct one? It is clear that such a check can-

115

not be possible without interacting with the participants, since otherwise the protocol
could not be minimum knowledge with respect to the private inputs: recall that there
should be no way for anyone to tell whether he is presented with a genuine protocol
conversation or a simulated one. But this is exactly what we would be asking the non
participant above to do!

prove once again using the CHECK TRANSFORMATION protocol that he has computed
valid transforms. Then all of the computation phase could be checked without interac-
tion.

With interaction, however, checking is easy: each participant could be asked to

7.5 Fault Recovery

In our basic construction, there is not much one can do short of stopping the protocol, if
some participant sends incorrect messages, or just stops completely. In the recent litera-
ture, a number of techniques have been proposed for recovering from such situations.

Under the assumption that the majority of users are honest, [GoMiWi] propose to
verifiably secret share the secret inputs of all participants. In the event of a fault, a
majority of users would recover all the secrets of the participant who stoped, and com-
plete the computation. Thus, it is assumed by deht ion that an honest participant will
always send the messages he is supposed to. This hardly seems a realistic assumption,
however: in practice, almost all faults may OCCUT by accident, or even worse, as a result of
dishonest participants sabotaging honest ones to reveal their secrets!

Galil, Haber and Yung [GaHaYu] propose instead a secret sharing in two levels:
first, for each secret bit of a user, the user distributes one “x-or share” to each of the
other participants, where the exclusive-or of these x-or shares is the original secret bit.
The x-or shares are then venfiably secret shared. Recovery is now possible by recon-
structing the x-or shares held by the stopped participant. which has the effect of preserv-
ing that participant’s privacy.

case QRS is used, participant Pi would first commit to his input, and then distribute x-or
shares of the factorisation of his modulus to the other participants. If Pi stops working,
any majority of users could reconstruct the x-or shares of his factorisation, and use
instances of our basic protocol to simulate P,: open his commitments as needed. etc.

In addition to this, the techniques presented in [chz] can be used to add flexibility
to the protocol. Here, it is shown how to change the pmwn, i.e. the number of partici-
pants necessary to reconstruct the secret, during the protocol. This can be useful in appli-
cations, where it can be assumed that almost all faults occur by accident, because of
breakdown of communication lines, etc. In this case, it may be desireable to keep the
ratio between the quorum and the number of remaining participants constant.

Our protocol could easily be adapted to include the procedure of [GaHaYu]: In

116

7.6 The Possibility of Further Generalizations

>From an intuitive point of view, it may seem unnatural that only one participant
can be unconditionally protected. Why not try to devise a protocol where any subset of
the participants could have this option?

To understand this question better, consider the All-or-nothing-disclosure problem
(ANDOS).

In this problem, party A posseses a number of secrets, of which she is willing to dis-
close exactly one to B. B would like to be able to choose which secret to get, without dis-
closing to A which secret he is interested in.

ermore, the folklore of the subject has it that for fundamental information theoretical rea-
sons, a two party A N D O S cannot be implemented such that the secrets of both parties
are unconditionally protected. Informally, this is so since if A is unconditionally pro-
tected, the messages she sends must contain enough Shannon information to determine
exactly one of her secrets. But this must then be the secret B learns, which means that he
is anythmg but unconditionally protected!

Allthough we do not yet have a formal proof that ttus last claim is true, it certainly
seems that there is little hope of acheiving the generalisation described above.

Under different assumptions, however, it is possible to get unconditional security for
all participants. In [ChCrDa], it is shown how to do this using no cryptographic assump-
tions, in a model where there exists an unconditionally secure secrecy channel between
every pair of participants, and where at least two thirds of the participants will follow the
protocol.

On the positive side, it should be noted that in joint work with Claude Crepeau, we
have recently shown that our basic protocol can be made to work, based only on the
assumption that a one way function exists, and that there is a protocol solving the
ANDOS problem: Clearly, bit commitments are possible if one way functions exist, and
the comparability property can always be satisfied using the fact that all NP-statements
can be proved in zero knowledge (allthough using very inefficient protocols). The idea is
now to use a protocol for ANDOS to get something which 4l replace the blinding pro-
perty: Notice that when participant Pi blinds other participants' commitments, the basic
fact used in the protocol is that P, knows the x-or sum of the bit contained in the original
commitment, and the one contained in the blinded version. It wi l l therefore be sufficient
if he can learn a set of these x-or relations by doing an ANDOS protocol with each P,
with j <i.

The fact that ANDOS can be based on the existence of a trapdoor one way func-
tion [Cr] then implies that our protocol can also be based only on a trapdoor one way
function. The resulting protocol would have the same property as the one of [GaHaYu]
which is based on the same assumption, namely that only one trapdoor function would

Clearly, ANDOS is just a special case of the general computation problem. Furth-

117

have to be generated for each participant, while the solution in [GoMiWi] requires genera-
tion of o (n 2> functions.

8. Proving all IP-statements in Zero Knowledge

Below, we will informally describe how to use our protocol to construct a zero knowledge
proof system for any language L in IP. By definition of IP, we may assume that we have
a proof system for L, i.e. a polynomial time Turing machine Y (the verifier), a Turing
machine P with unlimited power (the prover), and an interactive protocol that can be exe-
cuted by P and V. The protocol has the property that given a binary string x E L , the
verifier w d accept x at the end of the protocol with overwhelming probability, while if x
is not in L, x will be rejected with overwhelming probabdity, even if the prover does not
follow the protocol.

In each round of the protocol, one of the machines recieves a message, does some
(probabilistic) computation, and outputs another message. One can think of these com-
putations as being described by boolean circuits - in particular the circuits describing
the verifiers computations can be at most of polynomial size.

The idea is now to use our computation protocol on each of the circuits speclfylng
the verifier‘s computations. More specifically, the following is done:

At each point where the prover is about to send a message in the original protocol,
it will instead send a collection of bit commitments containing the bits of this message.
The parties will now use our computation protocol on the circuit specified by the original
proof system to be used by the verifier at this point. This circuit may take as input any
message sent so far, but also some secret inputoinflips for examplerom the verifier. The
comparability property of the bit commitment schemes will ensure that the same set of
messages and input is used consistently throughout. The computation protocol will be
executed so that the output of the circuit, i.e. the verifiers next message in the original
proof system, is private to the prover, by techniques introduced in the previous section.
The prover is now free to read ths message and compute a response, perhaps even using
its infinite computing power.

The last circuit processed is the one doing the computation that the venfier should
use in deciding whether or not to accept the proof in the o r ipa l proof system. The out-
put of this circuit is opened to the verifier, who can check that indeed it is “accept”.

It is now easy to see that, because the computation protocol is correct, the verifier
can be convinced that it would have accepted, had it done the original protocol with the
prover. Note however, that this makes essential use of the fact that one party-n h s
case the verifieran be unconditionally protected. This means that, even using its infinite
computing power, the prover will not learn anything about the secrets of the verifier and
is therefore in essentially the same position as in the ori_ginal proof system.

On the other hand. since the computation protocol is also secure with respect to the

118

secrets of the prover, this new proof system is zero knowledge: the verifier learns nothing
except the fact that x ELverythLng else is hidden in bit commitments, which are computa-
tionally as good as nothing.

All this can be summarised in the following

Theorem 8.1.

Assume that pairs of claw free trapdoor functions exist. Then any language in IP
has a zero knowledge proof system.

proof

The existance of trapdoor one way functions will make our basic computation pro-
tocol work with conditional security, which is what we need for the prover. The clawfree-
ness implies the existance of a bit commitment scheme hiding the bits unconditionally
[Ch], which means that the verifier can be protected as required above0

Acknowledgements

We would like to thank Gilles Brassard and Claude Crepeau for many stimulating discus-
SiOnS.

References

W r I

[Bll

[ChCrDa]

[Chi

[CUI

P I

[GaHaYu]

Brassard and Crepeau: Zero knowledge simulation of boolean circuits.
Proc. of Crypto 86.

Blum: Coinflipping by telephone: Protocols for solving impossible prob-
lem. F’roc. of 24. IEEE CompCon, 1982.

Chaum, Damgkd and Crepeau: Fundamental primitives for multiparty
unconditionally secure protocols. To appear.

Chaum: Demonstrating that a public prdcate can be satisfied while reveal-
ing no information about how. Proc. of Crypto 86.

Chaum: How to keep a secret ahve. Proc. of Crypt0 84.

Crepeau: Equivalence between two flavours of oblivious transfers. To
appear in proceedings of Crypto 87.

Galil, Haber and Yung: Primitives for D e s i p g Multi-Party Cryptographic
Protocols from Specifications. To appear.

119

[GoVa] Goldreich and Vainish: How to solve any protocol problem: an efficiency
improvement. Roc. of Crypto 87.

Goldreich, Micali and Wigderson: How to play any mental game, Roc. of
STOC 1987.

Goldreich, Micali and Wigderson: How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. Roc. of
Crypto 86.

Goldwasser and Micali: Probabilistic Encryption. JCSS, vo1.28, No.2, A p d

[GoMiWi]

[GoMiWi2]

[GoMi]
1984, pp.270-299.

[GoMiRa] Goldwasser, Micali and Rackoff The knowledge complexity of interactive
proof systems. Proc. 17th STOC, 1985.

Perdta and van de Graaf: A simple and efficient protocol to prove the vali-
dity of your public key. To appear in proceedings of Crypto 87.

Yao: How to generate and exchange secrets. Proc. of 27. FOCS, 1986.

Yao: Protocols for secure computations. Roc. of 23. FOCS, 1982.

[&Pel

[Y11

ry21

