
cMix: Anonymization by High-Performance Scalable Mixing
David Chaum

Voting Systems Institute, USA
david@chaum.com

Debajyoti Das, Aniket Kate
Purdue University, USA
{das48,aniket}@purdue.edu

Farid Javani, Alan T. Sherman
Cyber Defense Lab, UMBC, USA
{javani1,sherman}@umbc.edu

Anna Krasnova
Radboud University, NL

anna@mechanical-mind.org

Joeri de Ruiter
University of Birmingham, UK

j.deruiter@cs.bham.ac.uk
Abstract

cMix is a suite of cryptographic protocols that can re-
place today’s dominant chat systems, offering superior
confidentiality and anonymity, while providing compa-
rable performance to users. cMix permutes batches
of uniform-length messages through a fixed cascade of
nodes and moves all expensive public-key operations
into precomputations that can be carried out using sep-
arate dedicated hardware at each node.

cMix provides payload secrecy, sender-recipient un-
linkability, sender anonymity, and sender authentication
for recipients, unless all cMix nodes are compromised.
For each batch, the adversary may know all senders and
all recipients of traffic in the underlying packet-switched
network, yet the adversary cannot link any sender to re-
cipient.

cMix provides fast delivery of messages, in both the
forward and reverse directions, by having each node per-
form only a small number of symmetric-key and simple
group operations (no modular exponentiations) in real
time. Performance benefits include moderately low la-
tency (despite large batch sizes) and efficient utilization
of node machines. Senders (e.g., smartphones) perform
their part of the cMix real-time protocols with similarly
modest amounts of computation, resulting in negligible
additional delay, battery, or bandwidth usage. The per-
formance of cMix scales linearly in terms of the number
of nodes, users, and messages,

Our presentation includes a detailed specification of
cMix, simulation-based security proofs, and anonymity
analysis. We have implemented cMix on clients on the
Android platform, and we give performance analysis,
both modelled and measured, of two working prototypes
currently running in the cloud.

1 Introduction

Untraceable (anonymous) and unlinkable communica-
tion are fundamental to freedom of inquiry, freedom of

expression, and increasingly to online privacy, includ-
ing person-to-person communication. Employing anony-
mous communication networks has become increasingly
popular across the world over the last fifteen years. This
popularity is exemplified by use of the onion routing net-
work Tor [50].

The Tor network, however, is susceptible to a va-
riety of traffic-analysis attacks [24, 29, 38, 49], based
in part on Tor’s non-uniform message size and tim-
ing. Recent anonymity analyses [4, 31] raise doubts
on the quality of anonymity possible using so-called
onion routing. By contrast, mixing networks (also called
mixnets) [13,20,21,27,30,48,51] are inherently less sus-
ceptible to these traffic-correlation and network-level at-
tacks. Existing mixnet designs, however, introduce a sig-
nificant performance overhead to users and mix nodes.

In this paper, we present, implement, and analyze
cMix, a new suite of fast cryptographic protocols for a
variety of anonymity services, including chat. Using pre-
computation of a group-homomorphic encryption func-
tion, cMix avoids all expensive real-time public-key op-
erations (including modular exponentiation) of senders,
nodes, and receivers. By performing precomputations
on dedicated separate hardware attached to each node,
cMix simultaneously permits moderately low message
latency, large batch sizes, and high processor utilization
of the nodes. cMix’s fast performance and key manage-
ment make it highly scalable for deployment with large
anonymity sets and large numbers of nodes.

The main novel and significant contributions of cMix
are three: precomputation, key management wherein
each sender (and optionally each receiver) establishes a
separate shared key with each node, and the integration
of these elements and other well-known building blocks
to produce a practical and useful anonymity system with
strong anonymity properties. In the rest of this section
we highlight some of the design features that go into
cMix.

By processing messages in large batches, and by re-

1

quiring all messages of a batch to have the same length,
cMix avoids flow-analysis attacks that plague many ex-
isting anonymity systems. As for most batched mixnets,
cMix can support a variety of ways to manage batches.
One option is “threshold and timing” [46], where the sys-
tem “fires” (sends along all messages in the buffer) every
t seconds, provided there are at least β ′ messages in the
buffer. These choices have implications on anonymity
and latency but are independent of the cMix system.

In cMix, each sender choosing to participate in a par-
ticular round sends an input to the cMix system, which
after passing through a fixed cascade of mix nodes, ar-
rives in an output buffer. Unless all nodes collude, the
outputs are unlinkable to the inputs, even if the adver-
sary knows for each batch the set of senders and the set
of receivers. By contrast, Tor cannot handle this power-
ful adversarial model.

We envision each mix node to be a powerful highly-
reliable computing system, preferably located in a sep-
arate region of the world. With traditional mixnets, to
achieve low latency of messages, node hardware must be
idle for much of the time. Attempts to increase machine
utilization by pipelining require smaller batch sizes. By
contrast, cMix’s use of precomputation facilitates higher
machine utilization by having the expensive public-key
operations performed on separate dedicated hardware
hardware far in advance. Furthermore, these precom-
putations are highly parallelizable. We assume enough
computational resources are provided for the precompu-
tations that they do not become a real-time bottleneck.

The exact format of an input depends on the appli-
cation. For example, for some applications, each input
might be an ordered pair (Bi,Mi), where Bi is the recipi-
ent and Mi is the payload. The sender encrypts the entire
input using message keys shared by the sender and each
mix node. Each sender establishes a long-term shared
key separately with each cMix node. Each such shared
key seeds a cryptographic pseudorandom number gener-
ator to produce a sequence of message keys, the next in
the sequence being selected when the sender chooses to
participate in a particular round. Each sender encrypts its
input with modular multiplication by the next message
key for each cMix node.

During the real-time mixing of an input batch, each
cMix node replaces each of its message keys with a pre-
computed random value. Then, using another random
value and a random precomputation also determined in
the precomputation, each node includes the new random
value and applies its permutation to the buffer of mes-
sages in the batch. Finally, using a value that was pre-
computed in a multiparty-secure manner from all the ran-
dom values and permutations, a single group operation
cancels all random numbers, leaving the permuted out-
put batch. By freeing mix nodes from performing expen-

sive public-key operations in real time, real-time mixing
is much faster than in previous mix networks. For users,
the amount of computation on their smart phones (and
thus the corresponding power usage) is also reduced.

cMix can be integrated in a variety of ways into a va-
riety of mechanisms for providing anonymity services.
Typically, each sender will send its input to a simple
untrusted “network handler,” who will arrange the ar-
riving inputs into batches. As is typically true for mix
networks, receivers do not necessarily contact the nodes,
when the network handler (on behalf of nodes) can make
the outputs from the output buffer available to the final
receivers. The unlinkability of inputs to outputs does not
depend on the correct operation of the network handler.

Because each input is encrypted, the network handler
cannot read the payload of any input when she receives
the input; hence, in particular, the network handler can-
not read recipient information if present in the payload
when she receives the input. Recipient information, if
present, is readable for any message in the output buffer,
but no one (not even the network handler) can link the
recipient to the sender.

In addition to guaranteeing unlinkability of inputs and
outputs, cMix permits end-to-end confidential commu-
nication between the sender and the receiver as well
as a confidential sender authentication to the receiver,
without requiring any external public-key infrastruc-
ture for the users. This unique feature of combin-
ing message confidentiality and sender authentication
with anonymity, which was not possible in any previous
anonymity system, emerges naturally from the key man-
agement and communication flows of the cMix protocol.

Our contributions include:
1. A suite of new fast scalable cryptographic

anonymity protocols, cMix, based on precomputa-
tion and on permuting uniform-length messages in
batches through a fixed cascade of nodes.

2. Simulation-based security proofs, and anonymity
analysis for cMix.

3. An implementation of cMix running in the cloud
(Amazon Web Services) and on clients on the An-
droid platform, and performance analysis of the
cMix protocol based on modelling and on bench-
marks from our cloud implementations.

4. A cryptographic commitment-based defense against
active tagging attacks, in which attacks the adver-
sary modifies messages at two different hops to ex-
tract information about the receivers.

2 Background and Related Work

Prior practical anonymity systems are based primarily on
mixnets or onion routing.

2

2.1 Mix Networks

In 1981, Chaum [13] introduced the concept of mixing
networks (or mixnets) and gave the basic cryptographic
protocols whereby messages from a set of users are re-
layed by a sequence of trusted intermediaries, called mix
nodes or mixes. A mix node is simply a message relay
(or proxy) that accepts a batch of encrypted messages,
decrypts and randomly permutes them, and sends them
on their way forward. This process makes the task of
tracing an individual message through the network dif-
ficult. Chaum’s paper describes batched and unbatched
versions of mixing. In more than three decades of re-
search on mixnets, many mix network designs have been
proposed including [20,21,27,30,48,51], and a few have
been implemented [19, 37].

Anonymizing communication through a mix network
comes with computation and communication overheads:
user messages are batched to create an anonymity set
(and therefore delayed), and they are padded or truncated
to a standard length to prevent traffic analysis. Further-
more, in current mix networks, multiple public-key en-
cryption layers are used to encapsulate the routing in-
formation necessary to relay the message through a se-
quence of mixes. Our novel mixnet architecture, cMix,
reduces the computation overhead by replacing real-time
public-key operations with symmetric-key operations.

Some early mixing protocols [13, 21] were based on
heuristic security arguments, and weaknesses have been
discovered with them [43, 48]. By contrast, most of the
recent mixing formats [11, 20, 36, 43] are designed with
provable security. We also achieve provable security for
cMix: we define a simple ideal functionality for cMix
and prove simulation-based security for the protocol.

A key distinction of cMix is its shifting of all public
key operations to the precomputation phase. Moreover,
these public key operations are performed only by the
nodes, and no user needs to be involved. In the litera-
ture, to the best of our knowledge, only Adida and Wik-
ström [1] have considered an offline/online approach to
mixing earlier; however, their scheme still requires sev-
eral public-key operations in the online phase.

Another notable difference between cMix and most
previous mixnets is that each mix node knows all
senders. This difference does not weaken the adversar-
ial model because the adversary is expected to know all
participants of the mixing round, and in cMix the unlink-
ability between a sender and a receiver is still ensured,
by even any one uncorrupted mix node. On the other
hand, this can empower cMix nodes to perform other
tasks such as end-to-end secure messaging without in-
troducing a public-key infrastructure of the participants.

2.2 Onion Routing

Higher latency of traditional mix networks can be un-
satisfactory for several communication scenarios such as
web search or instant messaging. Over the years, a sig-
nificant number of low-latency anonymity networks have
been proposed [2,5,11,14,25,32,33,40], and some have
been extensively employed in practice [23, 50].

Common to many of them is onion routing [26, 41],
a technique whereby a message is wrapped in multiple
layers of encryption, forming an onion. A common real-
ization of an onion routing system is to arrange a collec-
tion of onion routers (abbreviated ORs, also called hops
or nodes) that relay traffic for users of the system. Users
then randomly choose a small path through the network
of ORs and construct a circuit—a sequence of nodes that
will route traffic. After the OR circuit is constructed,
each of the nodes in the circuit shares a symmetric key
with the anonymous user, which key is used to encrypt
the layers of future onions. Upon receiving an onion,
each node decrypts one of the layers, and forwards the
message to the next node. Onion routing as it typically
exists can be seen as a form of three-node mixing.

Low-latency anonymous communication networks
based on onion routing [24, 29, 38, 49], such as Tor [50],
are susceptible to a variety of traffic-analysis attacks.
By contrast, mixnet methodology ensures that the
anonymity set of a user remains the same through the
communication route and makes our protocol resistant to
these network-level attacks.

In practice, Tor fails to provide ironclad anonymity. A
recent blog [16] reports that criminal users of Tor have
been deanonymized, and that researchers at Carnegie
Mellon University were paid at least $1 million to assist
the FBI in this task.

There are similarities between our precomputation
phase which uses public-key operations and the circuit-
construction phase of onion routing. Similarly, there
are similarities between our real-time phase which uses
symmetric-key operations and the onion wrapping and
unwrapping phases. Unlike onion routing, however, our
precomputation phase requires no participation from the
users—a major advantage. Each of our users establishes
a separate shared secret with each mix node, but this key
establishment is performed infrequently, and in contrast
with onion routing, users do not perform anonymous key
agreement [5, 23, 25, 33] using a telescoping approach
or layered public-key encryption. These differences re-
sult in a significant reduction in the computation that the
users need to perform and make our system more attrac-
tive to energy-constrained devices such as smartphones.

3

3 Overview of cMix

cMix is a new mixnet protocol that provides anonymous
communications among users. As shown in Figure 1,
the core of the system comprises n mix nodes, which
process discrete batches of messages. A simple network
handler1 arranges the inputs into batches. The main goal
is to ensure unlinkability between messages entering and
leaving the system, though it is known which users are
communicating in any batch. cMix precomputes all slow
public-key encryption, enabling all real-time computa-
tions to be carried using only fast multiplications.

Figure 1: The cMix communication model.

3.1 Communication Model
Let m be the number of users of the cMix system, which
includes a sequence of n mix nodes N1,N2, . . . ,Nn. Each
node can process β messages at a time, where β ≤ m.
During a precomputation phase, mix nodes fix a permu-
tation of future incoming β messages. In the real-time
communication, the nodes permute the messages using
this permutation.

We split the real-time phase into rounds, where each
round applies one permutation used by the mix nodes
to one batch of messages. Each round can be divided
into sub-rounds, which can differ by application. Let
us consider anonymous web-browsing as an application
of cMix (for more about cMix applications, see Sec-
tion 9.2). In that case a single round is divided into two
sub-rounds, one for the delivery of the forward message
(browsing request), one for the confirmation message of
the request delivery sent by the last mix node. All mes-
sages transmitted during one sub-round have the same
length and are processed simultaneously.

1We introduce the network handler abstraction primarily to improve
readability. As for traditional mix networks, all of its functionalities can
be realized by the mix nodes.

At the beginning of a round the first mix node accepts
up to β messages that require a similar sub-round struc-
ture to be executed. For each round, the handler arranges
β messages into the input buffer of the first mix node,
sorting the messages by lexicographical order. All other
messages are not accepted and are sent in a subsequent
round.

cMix follows the threshold and timed mixing strategy
from [46], where the handler starts a new round every t
seconds only if it has at least β ′ messages in the buffer,
for some parameter β ′ < β , where we expect at least β ′

users to be using the system at any given time. When a
smaller number of users is active, this strategy can lead to
increased latency or even disruption. One design choice,
at the cost of increased engery consumption, is to inject
dummy messages when needed to ensure enough traffic
to have β messages every t seconds. The details depend
on the application and are orthogonal to mixnet design.

3.2 Adversarial Model

We assume authenticated communication channels
among all mix nodes and between the network handler
and any mix node. Thus, an adversary can eavesdrop,
forward and delete messages, but not modify, replay, or
inject new ones, without detection. For any communi-
cation not among mix nodes or the network handler, we
assume the adversary can eavesdrop, modify and inject
messages at any point of the network.

The goal of the adversary is to compromise the
anonymity of the communication initiator, or to link in-
puts and outputs of the system. We consider applications
where initiators are users of the cMix system. We do not
consider adversaries who aim to launch denial-of-service
(DOS) attacks.

An adversary can also compromise users, however we
assume that at least two users are honest. Mix nodes
can also be compromised, but at least one of them needs
to be honest for the system to be secure. We assume
compromised mix nodes to be malicious but cautious:
they aim not to get caught violating the protocol.

3.3 Solution Overview

Before using the system, each sender must establish a
shared symmetric key separately with each of the mix
nodes. For each mix node Ni and each user U j, let Ki, j
denote their shared key. This key establishment can be
carried out, for instance, using the Diffie-Hellman (DH)
key agreement protocol, with forward secrecy (compro-
mise of a shared key does not compromise any past
shared key) and at least one-way authentication (the
sender is convinced she is communicating with the true

4

mix node). During this process, each user can also be as-
signed one or more unique pseudonyms as her identities
in the cMix system; doing so better protects the user’s
identity and her interactions with the system.

When communicating with the mix network, user U j
will encrypt or decrypt each of her messages using mes-
sage keys derived from her keys shared with each node
Ni. Specifically, the next message key ki, j is the next out-
put of a forward-secure pseudorandom number generator
with seed Ki, j. To encrypt a message, the user first com-
putes a composite key using the derived message keys:
K j = ∏

n
i=1 ki, j. Then she can encrypt her first message

M1 as M1×K−1
j .

cMix processes each batch of messages in two phases:
precomputation and real-time. During each of these
phases, cMix performs a forward and reverse path of
computations, each organized in steps. Each mix node
organizes the messages of the current batch in a buffer
(also called a map). During one step of each path, each
node permutes the messages within the buffer.

Each node associates each shared key with a slot in
its message buffer. During the forward path of the real-
time phase, each node replaces its shared key for each
slot with a randomly-generated value from the precom-
putation. During the reverse path, each node multiplies
back in the shared keys. In doing so, the real-time phase
avoids any expensive public-key operations.
The Protocol Steps. Figure 2 summarizes the precompu-
tation and real-time phases of the forward paths in cMix.
Each step is denoted by a solid box. Section 4.1 defines
our notations, and Figure 7 (in Appendix) fills in many
of the details for each step.

Figure 2: Overview of the cMix protocol (forward paths).

In the first step of the precomputation (forward path),
each node Ni generates a random value ri, j for each slot j
in its message buffer. Each node encrypts its vector ri

−1

of the inverses of these values and sends the resulting
vector E (ri

−1) to the network handler. The handler, ex-
ploiting the group homomorphic property of E , com-
putes the (component-wise) direct product E (R−1) of the
encrypted vectors and sends the result to the first mix
node.

In the second step of the precomputation, each node
Ni in order permutes the message buffer with its random
permutation πi. It also multiplies in another vector of
random values si

−1. The result at the exit of the last
node is E ((ΠΠΠ(R)× S)−1), where ΠΠΠ is the component-
wise compositions of the πi’s, and S is the direct product
of the permuted si’s. This result is sent to the mix nodes
for decryption.

In the third step of the precomputation, each node Ni
computes its decryption share Di(c) of the result from
Step 2. Only with knowledge of all of these shares can
one perform the decryption. In the final step of the real-
time phase, each node will send these shares to the net-
work handler, who will decrypt the permuted messages.
The purpose of this subtle third step is to prevent certain
“tagging” attacks, in which a corrupt node marks an out-
put. Each node sends a signed commitment of its share to
the other nodes, and each node verifies all of these com-
mitments. Alternatively, the correctness of the shares can
be established by a zero-knowledge proof.

We now explain the real-time phase. In the first step
of the real-time computation, each mix node i sends the
product of its vector of shared keys ki with its vector of
random values ri to the network handler. The network
handler then multiplies all these values together with the
received messages. This action, which uses only mul-
tiplications, transforms the encrypted input M×K−1 to
M×R. Here, K is the direct product of the ki’s, and R
is the direct product of the ri’s.

In the second step of the real-time phase, each node i in
order permutes its message buffer with its permutation πi
and, to hide πi, multiples in its vector of random values
si. The result at the exit of the last mix node is ΠΠΠ(M×
R)× S. The exit node sends this result to the network
handler.

In the final step of the real-time phase, each node sends
to the network handler its decryption share Di(c), which
it computed from the last step of the precomputation.
With all of these shares, the network handler decrypts
the message. The network handler sees the unencrypted
payloads but cannot link them to the inputs.

4 The Core cMix Protocol

After explaining our notation, we describe the cMix pro-
tocol in detail, including how it detects tagging attacks.

5

4.1 Preliminaries
For simplicity we assume here that the system already
knows which user will use which slot. When implement-
ing the system this can, for example, be achieved by
including the sender’s identity (possibly a pseudonym)
when sending a message to the system.

All computations are performed in a prime-order
cyclic group G satisfying the decision Diffie-Hellman
(DDH) assumption. The order of the group is p, and
g is a generator for this group. Let G∗ be the set of
non-identity elements of G. We use a multi-party group-
homomorphic cryptographic scheme based on ElGamal,
described by Benaloh [7]. Every node Ni in the scheme
holds a share ei ∈ Z∗p of the secret key. The public key d
of the scheme can be computed using the secret shares:
d = ∏i gei . Using this scheme, a value r is encrypted as
follows: (gx,r×dx), for x ∈r Z∗p. We call gx the random
component and r×dx the message component of the ci-
phertext. To decrypt a ciphertext (gx,r× dx), all parties
need to cooperate. Every node Ni computes a so-called
decryption share from the random component of the ci-
phertext: Di(gx) = (gx)−ei . The original message is then
retrieved by multiplying all the decryption shares with
the message component: r×dx×∏

n
i=1(g

x)−ei = r.
Within cMix we use the following notation for various

functions and variables:
– ei: the share of node Ni of the secret key e.
– d: the public key of the system, based on the node

shares of the secret key.
– E (·): ElGamal encryption under the system’s public

key. When applying encryption on a vector of values,
each value in the vector is encrypted individually and the
result is a vector of ciphertexts.

– Di(·): the decryption share of node Ni based on the
random component of a ciphertext and the node’s share
of the secret key. As with encryption, applying this func-
tion on a vector of random values results in a vector of
corresponding decryption shares.

– πi: a random permutation of the β slots used by Ni.
The inverse of the permutation is denoted by π

−1
i .

– ΠΠΠi(a): the permutation performed by cMix through
Ni, i.e., the composition of all individual permutations:

ΠΠΠi(a) =

{
π1(a) i = 1
πi(ΠΠΠi−1(a)) 1 < i≤ n.

– ΠΠΠ′i(a): the inverse permutation of slots performed
by the mixnet for the return path through node Ni:

ΠΠΠ
′
i(a) =

{
π−1

n (a) i = n
π
−1
i (ΠΠΠ′i−1(a)) 1≤ i < n.

– ki, j,k′i, j ∈ G∗: secret key shared between node Ni
and the sending user of slot j used to blind messages and
responses, respectively. These keys are group elements.

– ki: vector of keys shared between node Ni and users
for β slots; ki = (ki,1,ki,2, . . . ,ki,β).

– K j,K′j ∈ G∗: the product of all shared keys for the
sending user of slot j: K j = ∏

n
i=1 ki, j and K′j = ∏

n
i=1 k′i, j.

The user for this slot stores the inverse of these keys, K−1
j

and K′−1
j , to blind and unblind messages and responses,

respectively.
– K, K−1: vectors of products of shared keys

for β slots and their inverses, respectively; K =
(K1,K2, . . . ,Kβ) and K−1 = (K−1

1 ,K−1
2 , . . . ,K−1

β
).

– M j,M′j ∈ G∗: the message and the response sent by
user U j in the forward and return phase, respectively.
Like other values in the system, these values are group
elements. They can be easily converted from, for exam-
ple, an ASCII-encoded string. The group size determines
the length of an individual message that can be sent.

For the forward path we have the following values:
– ri,a,si,a ∈ G∗: random values of node Ni for slot a.

Thus, ri = (ri,1,ri,2, . . . ,ri,β) is a vector of random values
for the β slots in the message map at node Ni. Similarly,
si is also a vector of random values for node Ni.

– R: the direct product of all local random values; i.e.,
Ri = ∏

i
j=1 r j.

– S: the product and permutation of all local random
s values:

Si =

{
si i = 1
πi(Si−1)× si 1 < i≤ n.

For the return path we use the following corresponding
messages:

– s′i,a ∈G∗: random value of node Ni for slot a.
– S′: the product and permutation of all local random

s′ values:

S′i =

{
s′i i = n
π
−1
i (S′i+1)× s′i 1≤ i < n.

We introduce an additional entity called the network
handler that performs non-sensitive computations, such
as computing the product of values output by nodes. Al-
ternatively, the handler role could be performed by any
of the nodes. Or, the computations of the handler could
be replaced by a pass through the mixnet, during which
every node multiplies its local value with the value it re-
ceived from the previous node. This strategy would bal-
ance the computational load over the nodes but might in-
crease latency, because the values need to be forwarded
after every local computation, whereas the network han-
dler can start computing when it receives the first values
and continue processing while the remaining values ar-
rive.

6

4.2 Detailed Description
4.2.1 Precomputation Phase

Here we discuss the precomputation phase to compute
the values that are necessary for one real-time phase. The
final goal of this phase is for the nodes together to com-
pute the values E ((ΠΠΠn(Rn)× Sn)

−1) and E (S′−1
1) that

are used in the real-time phase for the forward and return
path, respectively. Below we discuss how these values
are computed by the system.

Forward - Step 1 (preprocessing). The nodes start by
computing E (R−1

n) by sending the encryption of their
local r−1

i to the network handler. The network han-
dler computes the product of all the encryptions of the
individual values to produce the output of this step:
E (R−1

n) = ∏
n
i=1 E (r−1

i). The handler then sends this
value to the first node as input for the second step.

Forward - Step 2 (mixing). In this step, the nodes ex-
change the following messages:
node Ni −→ node Ni+1 :

E (ΠΠΠi(R−1
n)×S−1

i)

=

{
π1(E (R−1

n))×E (s−1
1) i = 1

πi(E (ΠΠΠi−1(R−1
n)×S−1

i−1))×E (s−1
i) 1 < i < n.

The last node computes E ((ΠΠΠn(Rn) × Sn)
−1) =

πn(E (ΠΠΠn−1(R−1
n)× S−1

n−1))× E (s−1
n). It sends the vec-

tor of random components from the ciphertexts of
E ((ΠΠΠn(Rn)× Sn)

−1) to the nodes and stores the mes-
sage components of E ((ΠΠΠn(Rn)×Sn)

−1) locally for use
in the real-time phase.

Forward - Step 3 (postprocessing). Using the ran-
dom components received, each node computes its in-
dividual decryption share for E ((ΠΠΠn(Rn)× Sn)

−1) and
stores it locally for use in the real-time phase. Each node
publishes a commitment to its decryption shares, which
is necessary to prevent a tagging attack in the real-time
phase (see Section 4.3).

The value needed for the return path is computed in a
similar way, though in the opposite direction and without
the r values.

Return - Step 1 (mixing). The nodes compute E (S′−1
1)

by sending the following messages:
node Ni −→ node Ni−1 :

E (S′−1
i) =

{
E (s′−1

n) i = n
π
−1
i (E (S′−1

i+1))×E (s′−1
i) 1 < i < n.

The first node now computes E (S′−1
1) =

π
−1
1 (E (S′−1

2)) × E (s′−1
1). The random components

are sent to the other nodes and the message components
are stored locally for use in the real-time phase.

Return - Step 2 (postprocessing). As for the for-
ward path, each node computes its decryption share for
E (S′−1

1) and stores it locally for use in the real-time
phase.

4.2.2 Real-time Phase

For the real-time phase each user constructs its message
for slot j by taking its message M j and multiplying it
with the inverse of the combined shared key K j to com-
pute the blinded message M j×K−1

j , which it sends to the
network handler. The network handler collects the mes-
sages and combines them to yield the vector M×K−1.
Forward - Step 1 (preprocessing). In the first step of
the forward path, the K−1 values are replaced by the r
values of each node. Every node Ni sends the values ki×
ri to the network handler. The network handler uses these
values to compute M×Rn =M×K−1×∏

n
i=1 ki×ri and

sends the result to the first node as input to the next step.
Forward - Step 2 (mixing). The next step mixes the
messages: node Ni −→ node Ni+1 :

ΠΠΠi(M×Rn)×Si

=

{
π1(M×Rn)× s1 i = 1
πi(ΠΠΠi−1(M×Rn)×Si−1)× si 1 < i < n.

The last node computes ΠΠΠn(M × Rn) × Sn =
πn(ΠΠΠn−1(M × Rn) × Sn−1) × sn and a commitment
to this value. This commitment is then sent to all other
nodes.
Forward - Step 3 (postprocessing). Upon receiving
the commitment from the last node, every other node
Ni sends its precomputed decryption shares for (x,c) =
E ((ΠΠΠn(Rn)× Sn)

−1) to the network handler. The last
node Nn sends the multiplication of the result from the
previous step with its decryption share and the message
component from the precomputation phase: ΠΠΠn(M×
Rn)×Sn×Dn(x)× c. The handler uses the decryption
shares to decrypt the precomputed E ((ΠΠΠn(Rn)×Sn)

−1)
and retrieves the permuted messages:

ΠΠΠn(M×Rn)×Sn×
n

∏
i=1

Di(x)× c

=ΠΠΠn(M×Rn)×Sn× (ΠΠΠn(Rn)×Sn)
−1

=ΠΠΠn(M).

The messages are published or delivered and the re-
sponses to these messages are collected in M′.
Return - Step 1 (mixing). For the return path we start
with the reversed permutations: node Ni −→ node Ni−1 :

ΠΠΠ
′
i(M

′)×S′i =

{
π−1

n (M′)× s′n i = n
π
−1
i (ΠΠΠ′i+1(M

′)×S′i−1)× s′i 1 < i < n.

7

The first node computes ΠΠΠ′1(M
′)×S′1 = π

−1
1 (ΠΠΠ′2(M

′)×
S′2)× s′1 and commits to this value as before. Again, the
value is sent to the network handler.

Return - Step 2 (postprocessing). In the last step, ev-
ery node Ni retrieves its precomputed decryption share
Di(x′) for (x′,c′) = E (S′−1

1) and uses it to compute
Di(x′)× k′i. The first node sends its decryption share
multiplied with the message component from the pre-
computation phase to the network handler: D1(x′)× c′.
After receiving the commitment from the first node, the
other nodes send their decryption shares to the network
handler. Finally, the handler uses the decryption shares
to retrieve the permuted messages blinded with K′:

ΠΠΠ
′
1(M

′)×S′1×
n

∏
i=1

(Di(x′)× c′×k′i)

=ΠΠΠ
′
1(M

′)×S′1×S′−1
1 ×K′

=ΠΠΠ
′
1(M

′)×K′.

The messages are published or delivered, and then
each user of slot j can unblind its response by multiply-
ing it with its shared key K′−1

j .

4.3 Detecting Tagging Attacks

Tagging attacks are a potential threat to all mixnets. If
it is possible to determine whether an output message is
valid, for example because it is an English message, a
tagging attack can determine the output slot correspond-
ing a specific input slot, with cooperation of the network
handler and any of the nodes. In the preprocessing step
of the real-time phase, the compromised node Ni replaces
one value in the vector it sends to the network handler.
In the slot j for which it wants to learn the recipient, the
compromised node inserts ki, j × ri, j × t, where t can be
a random group element. In the postprocessing step, the
handler sends decryption shares of all other nodes and
the output of the mixing step to the compromised node.
Using its decryption shares, the compromised node re-
trieves the messages. It can then determine for which
slot the message is invalid but becomes valid when di-
vided by t. For this slot it multiplies its decryption share
with t−1 and sends the decryption shares to the network
handler as usual. The output of the system remains the
permuted original messages.

To prevent this attack, in the last step each node com-
mits to its decryption share, to prevent it from chang-
ing during the real-time phase to cancel out any added
tag. Similarly, the last node commits to the output of
the mixing step. To detect whether any tagging took
place, all values are compared to their commitments.
This comparison can be performed, online or after the
real-time phase, by the nodes and/or by independent au-

ditors. Such an audit can prove that no node acted mali-
ciously.

5 Performance Analysis

We analyze the performance of cMix for the forward
path. We will express running times in terms of the time
τE to perform one public-key encryption, the time τD to
compute one public-key decryption share, and the time
τM to perform one group multiplication. For our encryp-
tion function, τD = τE /2. Recall that β is the number of
messages processed per batch, and n is the number of
mix nodes. We do not consider any parallel computa-
tions.

For each precomputation phase for the forward path,
cMix computes 2nβ encryptions and nβ decryption
shares, (two encryptions and one decryption share per
slot). Thus, this phase takes (5/2)nβτE time for the
public-key operations.

In the real-time phase for the forward path, cMix per-
forms β (4n+ 1) group multiplications. For every slot
and node, one multiplication removes the shared keys,
and two add the r and s values. In addition, the network
handler performs for each slot n multiplications combin-
ing the decryption shares, and one removing the precom-
puted value from the result. Thus, the real-time phase
takes β (4n+1)τM time for all multiplications.

It follows that the computations in the real-time phase
are approximately (5/8)(τE /τM) faster than the pre-
computation phase when performed in a single thread.
Therefore, if the real-time phase processes, for example,
α messages per second, the system needs to be able to
perform (5/8)(τE /τM)α precomputations per second. It
could do so, for example, with dedicated machines.

The messages that pass through the network either
contain 2β group elements for the encrypted values or
β group elements for the other messages. Assuming a
group element can be represented in λ bits, the messages
have average sizes of 2βλ and βλ , respectively.

6 Security and Anonymity Analyses

In this section, we overview the ideal/real world
paradigm-based simulation security analysis of the core
cMix protocol. We present an informal description of our
ideal functionality FcMix, the simulation security defini-
tion, and our main theorem. Then we analyze anonymity
properties of cMix in the AnoA framework [3] and
against well-known attacks on mixnets. For a com-
plete FcMix description and security proof sketch, see Ap-
pendix A .

8

6.1 Simulation Security Analysis

Ideal Functionality. In the ideal world we assume the
existence of a trusted third party (TTP). Each mix-node
in the network is connected to every other mix-node as
well as to the TTP via private authenticated channels.
In our ideal functionality FcMix, we use the message-
based state transitions and consider submachines for all
n mix nodes. To communicate with each other through
messages and data structures, these submachines share a
memory space in the functionality.

An adversary can observe, delay, or stop the messages
going from one node to another, but she cannot read the
message contents. If any node is compromised, how-
ever, it forwards to A every message that it receives, and
waits for the adversary’s instruction for every outgoing
message. Before sending any message, each uncompro-
mised node sends a notification to the (network) adver-
sary, waits for a reply, and proceeds only after getting an
approval from the adversary.

FcMix starts by processing incoming messages from
users, where the messages for compromised users are
chosen by the adversary A. FcMix accepts only one mes-
sage per user per batch. When the batch reaches β mes-
sages, precomputation starts.

FcMix triggers start of precomputation of the forward
direction by sending a message to the entry node. The
entry node creates a random permutation and stores it in
a database. It forwards a command to the next node to
start precomputation, which node repeats the same pro-
cedure. When the last node finishes, it notifies the other
nodes that the precomputation is complete. The last node
also notifies the network handler and FcMix. FcMix then
initiates precomputation for the return direction, which
executes in a similar fashion with two differences: first,
each node stores the inverse of the precomputation gen-
erated earlier, and second, the first node notifies FcMix
when the step is complete.

Next, FcMix informs the entry node to begin the real-
time phase. Starting from the entry node, each node
retrieves its previously stored precomputation (the only
permutation in FcMix), applies it to the current batch,
and triggers the next node to perform the same opera-
tion. Once the last node finishes, it informs the network
handler and all nodes to start postpocessing. Each node
confirms (pertaining to decryption in cMix) to the net-
work handler whether it has finished the precomputation
phase correctly. Once the handler receives confirmation
from all nodes, it sends notification to FcMix that the real-
time phase is complete. FcMix then forwards user mes-
sages to the handler, who in turn forwards them to A.
Once A returns the set of reply messages, the handler no-
tifies FcMix, which in turn notifies the last node to start
the real-time phase in the return direction. The return di-

rection operates in a similar fashion. For more details,
see Appendix A.

We now define the concept of simulation security,
which captures intuitively the conditions under which a
cryptographic protocol constitutes a secure realization of
the ideal world defined above. PPT refers to probabilistic
polynomial time.

Definition 1 (Simulation Security). A cryptographic
protocol is simulation secure if, for all PPT adversaries
A in the real world who actively corrupt any arbitrary
subset of users and mix-nodes in the anonymous commu-
nication network, there exists a simulator S in the ideal
world execution, which corrupts the same set of parties
and produces an output computationally indistinguish-
able to the output of A in the real world.

In Appendix A we show that, with a CPA-secure
threshold group-homomorphic encryption scheme and a
perfectly hiding commitment scheme, the core cMix pro-
tocol securely realizes the ideal world presented in the
previous subsection. More formally,

Theorem 1 (Simulation Security). If E is a se-
cure threshold group-homomorphic encryption scheme
and (Commit,Open) is a non-Interactive Commitment
Scheme, and assuming that each pair of user and mix-
node has agreed upon a long-term master key, then the
cMix protocol is simulation secure as defined in Defini-
tion 1 in the random oracle model.

6.2 Anonymity Analysis

The cMix protocol ensures sender anonymity. Sender
anonymity holds if all senders of a single round form
an anonymity set within which they are indistinguishable
from all other potential senders. This holds for both for-
ward and return messages: cMix ensures that the user
who initiated communication will remain anonymous.
The notion of sender anonymity was initially formulated
in [42] and formalized in [3].

We use the following framework to define sender
anonymity. Let the Challenger Ch(b) receive inputs from
an adversary specified by the function αSA (see Fig. 3).
The message that Ch receives from the adversary is for-
warded to FcMix in place of the user who is selected by
the challenge bit b. Another user, selected by the adver-
sary for Ch, sends a random message. Senders and recip-
ients are simulated by the environment, which lets them
pick communication partners and messages at random.
Let the event that an adversary compromised n nodes be
Eα . The goal of this section is to demonstrate that an ad-
versary can break sender anonymity of at least two hon-
est users only if she compromised all nodes in cMix.

9

Definition 2. FcMix provides (σ)-sender anonymity if
for the function αSA as defined in Fig. 3 for any ad-
versary A with 0 ≤ σ ≤ 1, Pr[0 = 〈A|Ch(0)〉] ≥ Pr[0 =
〈A|Ch(1)〉]+σ , where σ = Pr[Eα]

function αSA(s, (Sender0,Recip,M), (Sender1, ,), b)
if s 6= fresh challenge then

output ⊥
else

output (Senderb,Recip,M, challenge over)

Figure 3: Sender anonymity function [3].

Assume Eα did not happen, but an adversary compro-
mised a maximum of n−1 nodes. Let us consider the for-
ward round. From a message M sent to FcMix, A learns
only the sender identity as defined in CI and the posi-
tion of the message. From messages sent between any of
the submachines in the IF, A learns both the sender and
recipient. By invoking Receiving(corrupt, Ni), A com-
promises nodes. From any compromised node, A learns
the permutation he applies to the incoming messages, but
not the messages themselves. When corrupted nodes per-
form a precomputation or real-time phase, invoked with
the message (precomp, flag, r), they forward all the mes-
sages they receive to A. However, the content of mes-
sages sent by users is never forwarded to A and is ac-
cessed by nodes using shared memory. For any message
sent from the IF to the recipient, A learns the recipient
identity, as well as the content of the message.

A can see that both users he selected for Ch are send-
ing. He can also see that Recipient0 is receiving the mes-
sage M0. Since A compromised n−1 nodes, he learns all
but one of the permutations applied on the messages. A
can calculate which output slot of the honest node con-
tains the message M0. He can also calculate which input
slots of the honest node contain the (unknown) messages
of Sender0 and Sender1.

Since the permutation is random, A has probability of
1/2 to chose one the two senders correctly regardless
of the value of b. Thus, Pr[0 = 〈A|Ch(0)〉|¬Pr[Eα]] =
Pr[0 = 〈A|Ch(1)〉|¬Pr[Eα]].

Using similar arguments for the return round, one can
show that the same equation holds for both directions
of communication. Furthermore, it can be shown that
the equation Pr[0 = 〈A|Ch(0)〉] ≥ Pr[0 = 〈A|Ch(1)〉] +
Pr[Eα] holds using the same approach as in [3, p.30].

6.2.1 Analyzing Standard Mixnet Attacks

Because the K, R, and S values are never reused, cMix
protects against reply attacks [9] and the attacker cannot

follow duplicate messages. Section 4.3 gives a defense
against message-tagging attacks.

Intersection attacks and statistical disclosure at-
tacks [9,18,22] make use of mix network topologies that
allow users to choose routes freely for their messages
(free mix routes). In such systems, sets of messages in
a batch of a mix node can be distinguished since they
come from different mixes, have different route lengths,
etc. Assuming that users often use the same routes for
their messages, these routes can be distinguished by an-
alyzing network flow data. Because cMix uses a fixed
cascade of mixes [9], cMix is not susceptible to this fam-
ily of attacks

Traffic-analysis attacks are targeted at connection-
based anonymity systems, as opposed to message-based
systems. These connection-based systems often do not
batch and permute incoming packets, and they use free
mix routes. This permits an adversary to distinguish
these paths based on measures such as counting pack-
ets [47] and timing communications [17]. These at-
tacks are hard to apply on cMix because cMix per-
mutes message in batches using a fixed cascade of nodes.
Contextual attacks [44], sometimes referred as traffic-
confirmation attacks [45] and intersection attacks [8],
evaluate the time when particular senders and receivers
participate in the protocol, their communication patterns,
and how many messages they send and receive. Only
unobservable [42] systems protect against this type of
attack. cMix aims to reduce the risk of this attack by
introducing dummy traffic (see Section 3.1).

7 Special Features and Extensions

This section explains three extensions of cMix: including
recipient keys, providing sender authentication to the re-
cipient, and improving message integrity using random-
ized partial checking. To the best of our knowledge,
cMix is the first anonymity system that facilitates end-
to-end confidentiality and user authentication without re-
quiring pre-shared keys or PKI among the users.

7.1 Including Recipient Keys

The core system described in Section 4 does not encrypt
output messages or their responses. This transparency
might be sufficient for some applications, when confi-
dentiality could be added by the sender with end-to-end
encryption before sending a message to cMix. Instead,
by extending cMix to encrypt output messages, the re-
cipient needs to perform n multiplication to retrieve the
message and no computationally more expensive public-
key operation. An additional advantage is mitigation of
tagging attacks: with recipient encryption, it is no longer

10

possible to distinguish correct and incorrect output mes-
sages.

For this new functionality we introduce the following
additional notation:

– li, j and l′i, j: secret keys shared between node Ni and
the receiving user of slot j used to blind messages and
responses, respectively.

– li: vector of keys shared between node Ni and users
for β slots; li = (li,1, li,2, . . . , li,β).

– L j and L′j: the product of all shared keys for the
receiving user of slot j: L j = ∏

n
i=1 li, j and L′j = ∏

n
i=1 l′i, j.

The user for this slot stores the inverse of these keys, L−1
j

and L′−1
j , to blind and unblind messages and responses,

respectively.
– L, L−1: vectors of products of shared keys for β

slots and their inverses, respectively; L=(L1,L2, . . . ,Lβ)

and L−1 = (L−1
1 ,L−1

2 , . . . ,L−1
β
).

For the forward path, the precomputation phase re-
mains the same. We need only to change Step 3 in the
real-time phase: instead of the nodes sending their de-
cryption shares Di(x), they send Di(x)× li to the net-
work handler. As in Step 2 of the return path, the output
of the system would then be ΠΠΠn(M)×K. Unblinding the
message is efficient because the recipient needs only to
perform one multiplication to retrieve the message.

The return path will change in both the precomputa-
tion and real-time phases. It will be symmetric to the
modified forward path: all the random values and keys
are fresh as before and the reverse permutation is used.

We can apply this modification directly in applications
where all the messages go to the same destination, for ex-
ample, when using it for anonymous search. In other ap-
plications, however, we would need to know which keys
to use for the recipient. For this second case we need to
add additional functionality to the forward path. Assum-
ing the recipient also sends a response, no changes are
needed for the return path.

One way to incorporate recipients is to add a “parallel
session” that uses fresh values for the random variables,
but still uses the same permutations. The output of this
parallel session would be the recipient identities. The
first two steps in the real-time phase can be performed
concurrently, but the third step needs to be done for the
parallel session first to retrieve the recipient identities.
After the recipient identities are known, all nodes know
which l value to use for every slot, and they can perform
the third step for the actual messages.

7.2 End-to-end Sender Authentication

In addition to anonymity and end-to-end confidential-
ity using recipient keys, we can also empower a sender
to authenticate herself to the recipient without under-

mining her anonymity to anyone else. Such a sender-
initiated authentication message (say, SourceAuth) al-
lows the recipient to confirm the sender’s identity (pos-
sibly a pseudonym) with a high probability, provided at
least one mix node remains honest.

Let Ū j be a (possibly pseudonymous) identity for a
user U j. We assume that each identity in the system be
represented with ` bits. For SourceAuth messages, we
introduce the following additional notation:

– ū jk : the kth bit of identity Ū j.
– b̄: a random one-time-use private bit of user U j.
– bi: a random one-time-use private bit of node Ni.
– Ik: kth prime number with k ∈ [1, `]. We assign a

unique prime to every bit position in the identity string.
– A j: the product of the primes associated with the

one-bits in an identity Ū j; i.e., A j = Π`
k=1(Ik)

ū jk .
The forward path precomputation phase remains the

same. During the real-time phase, U j blinds a mes-
sage Ab̄+1

j using her K j values. Each node Ni then com-
putes the value A j

bi+1 × ri, j and uses it instead of ri, j
for U j’s slot during the preprocessing step. The rest of
the forward-path real-time phase remains the same as in
Section 7.1. After unblinding the message, the recipient
receives a message of the form An′

j , where n+ 1 ≤ n′ ≤
2(n+1). The recipient can easily run a divisibility check
for the first ` primes on the received message and derive
the encoded identity Ū j. Provided the message An′

j does
not exceed the message space, unique factorization will
be possible. If each prime factor does not have the same
prime power n′ such that n+ 1 ≤ n′ ≤ 2(n+ 1), the re-
cipient rejects the message.

As for the other standard messages, identity Ū j re-
mains hidden from the mix nodes during the mixing and
postprocessing steps. With high probability, it is also
not possible for a dishonest node to change the identity
Ū j to any other random valid `-bit string; it cannot pre-
dict the bi values of honest nodes nor b̄ chosen by U j.
Subsequently, a dishonest node cannot guess the correct
power of a prime to be added or removed to obtain a valid
SourceAuth message. Furthermore, it is not possible for a
dishonest sender to impersonate some user U j with help
of the network handler: he cannot predict K j values of
U j, and with very high probability the message received
by the recipient will not decode to a valid identity string.

With 2048-bit encryption, and five mix nodes, we can
support up to 32-bit identities. Using two SourceAuth
messages for a single identity supports 64-bit identities.

7.3 Protocol Integrity

cMix satisfies its integrity property if and only if:
1. each message is forwarded unmodified to its recipi-

ent, or

11

2. all nodes learn that the protocol was not performed
successfully.

In this work, we focus on the second condition. We
propose to use an existing mechanism to achieve in-
tegrity: Randomized Partial Checking (RPC), introduced
in 2002 by Jakobsson, Juels, and Rivest [28]. This
technique probabilistically verifies if the outputs of the
mixnet correspond to its permuted inputs. Thus, it veri-
fies both the integrity of messages and that the permuta-
tions were applied correctly. Additionally, RPC achieves
probabilistic accountability [35]: It ensures that if the
protocol is performed incorrectly, at least some of the
attackers are revealed with sufficiently high probability,
while honest parties are never blamed.

In RPC, nodes reveal certain information about a
(large) part of their input/output pairs, selected by other
nodes or by a random oracle. Revealed pairs are veri-
fied against previously made commitments. To maintain
privacy of users, adjustment nodes are paired with each
node belonging to only one such pair. Nodes in a pair
reveal their input such that none of the messages can be
followed as an input of one server and an output of a
second one. In comparison with the original mix proto-
col of Chaum [13], RPC achieves a more relaxed level
of anonymity under the assumption that at least one pair
of adjustment mix nodes behaves according to the pro-
tocol, as proven by Küsters et al. [35]. Küsters et al.
also demonstrate that a RPC mix-network with over a
hundred users has an anonymity level close to the ideal
mixnet in the presence of malicious-but-cautious attack-
ers. When implementing RPC, one must perform addi-
tional verifications to tackle issues in the original proto-
col described by Khazaei and Wilkstrm [34].

8 Implementations and Benchmarks

We implemented prototype systems in Python for two
scenarios. One system provides the core cMix protocol
with a single forward and return path. The other sys-
tem implements a full messaging system, with support
for recipient keys as described in Section 7.1. A sin-
gle web-based client implements the core protocol, and
an Android app implements the client side of the mes-
saging system. Each mix node includes a keyserver (to
establish shared keys with the users) and a mixnet server
(to carry out the precomputations and real-time compu-
tations). Commitments are implemented using SHA-256
and the Ed25519 signature scheme. A parallel process
on the nodes precomputes the encryptions and the de-
cryption shares.

We ran experiments by installing the prototypes on
Amazon Web Services (AWS) instances, with each node
comprising a c3.large with two virtual processors and
3.75GB of RAM. For all values, we used a prime-order

Table 1: Mean timings in seconds of 100 runs of the precom-
putation and real-time phases for different batch sizes using five
mix nodes for the core protocol.

Batch Precomputation Real-time
size Total Forward Return Total
10 0.54 0.07 0.03 0.10
50 2.19 0.26 0.12 0.38
100 4.14 0.47 0.25 0.73
200 8.21 0.88 0.45 1.33
300 11.94 1.29 0.62 1.92
400 15.81 1.52 0.84 2.36
500 19.51 1.80 1.01 2.81

group of 2048 bits.
On the AWS instances, each 2048-bit ElGamal en-

cryption took approximately 10 milliseconds on average,
and the computation of a decryption share took about
5 milliseconds. Multiplications of group elements took
only a fraction of a millisecond.

For our experiments we performed 100 precomputa-
tions and real-time phases for different batch sizes up to
500 with five mix nodes. We measured elapsed time on
the network handler from the time it instructed the nodes
to start until it either received a message from all nodes
indicating the precomputation finished successfully or it
computed the final responses to be sent to the users in
the real-time phase. During the precomputation, the net-
work handler does not receive a message at the end of
the forward phase, making it hard to measure exact tim-
ings of the forward and return path separately. Because
the encryptions are computed in a parallel thread, there
is also not a clear distinction between the two paths on
the individual nodes.

Tables 1 and 2 give timings for selected batch sizes us-
ing five mix nodes for the core protocol and the full mes-
saging implementation, respectively. The means of the
different phases can be quite a bit higher than typical due
to a few executions with very high timings, probably due
to external influences such as background processes run-
ning on the instances or traffic delays. Still, these timings
show the high performance of the system in the real-time
phase. The precomputation can easily be accelerated by
performing more computations in parallel, whereas for
the real-time phase a network connection with low la-
tency would improve the timings. Additional processors
would significantly improve the time it takes to compute
all necessary encryptions and decryption shares.

9 Discussion

We discuss applications of cMix, integration of cMix into
the larger Privategrity system, and future work.

12

Table 2: Mean timings in seconds of 100 runs of the precom-
putation and real-time phases for different batch sizes using five
mix nodes for the full messaging implementation.

Batch Precomputation Real-time
size Total Forward Return Total
10 0.92 0.12 0.03 0.15
50 3.79 0.41 0.10 0.51
100 7.39 0.83 0.20 1.02
200 14.54 1.55 0.40 1.95
300 21.66 2.24 0.59 2.83
400 28.70 2.95 0.79 3.74
500 35.87 3.63 0.97 4.60

9.1 Node Failure
Because cMix uses a fixed cascade of nodes, it is impor-
tant to consider what happens if a node fails. First, we
consider a node failure to be a highly rare event because
we expect each node to be a highly reliable computing
service that is capable of seamlessly handling failures.
Second, the system will detect node failure and notify the
senders and the other nodes; senders will be instructed to
resend using a new cascade (e.g., the old cascade with-
out the failed node). Each node can detect failures by
listening for periodic “pings” from the other nodes.

To minimize possible disruption caused by a single
failure, at the cost of increasing the precomputations, the
following option can be deployed: Each node can have
a reserve of precomputations ready to use for certain al-
ternative cascades. For example, this reserve can include
each of the alternative cascades formed by removing any
one node from the current cascade.

9.2 Integrating cMix into Privategrity
We designed and developed cMix as part of a larger
system, called Privategrity, which provides a variety
of anonymity services. This paper, however, presents
and analyses cMix independently from Privategrity. In
this section we describe some of the cMix applications
planned for Privategrity.

Rather than layering services on top of mixing and
allowing widely varying payload sizes, PrivaTegrity’s
novel approach integrates the services directly into its
mixing. PrivaTegrity achieves anonymity among all mes-
sages sent globally within each one-second time interval.

cMix enables a range of applications. Examples in-
clude private message delivery without use of public key
and including confidential authentication of the sender to
the recipient. So-called “untraceable return addresses”
(URAs) can be realized and allow establishing a group to
which all members of the group can send. Additional ap-
plications include payments, photo sharing, anonymous
feed following, voting, anonymous surveys, and general

credential mechanisms. We plan to provide more details
about these applications in subsequent writings.

To demonstrate that cMix can bring anonymous com-
munication to portable smart devices, we are developing
an Android application for instant messaging that uses
cMix in its back-end. This app aims to offer a user expe-
rience that is familiar and easy to use for non-technical
users. Though still in development, the app is functional
and will soon be released as a closed alpha.

9.3 Future Steps
Tasks we plan to work on in the future include the fol-
lowing: First, we would like to deploy cMix, including
implementing and refining many of the applications de-
scribed in Section 9.2, and working out strategies for
handling dummy messages (see Section 3.1). We would
also like to carry out more performance studies.

Second, we plan to explore different approaches for
enforcing integrity of the nodes, to ensure that they can-
not modify any message without detection.

Third, currently, message length is restricted by the
group modulus. We have begin to work out how to apply
key-homomorphic pseudorandom functions [10] and an
appropriate additive homomorphic encryption scheme to
allow any length message (see Appendix B).

Fourth, we would like to explore possible ways of
reusing a precomputation in a secure way.

10 Conclusion

cMix’s powerful security model and speedup in real-
time computation are very promising. Unlike previ-
ous mixnets, cMix enables smartphones to communi-
cate anonymously without slowing computations, drain-
ing batteries, and burning up network bandwidth. By
replacing real-time public-key operations with precom-
putations, and by avoiding the user’s direct involvement
with the construction of the path through the mix nodes,
cMix scales well for deployment with large anonymity
sets and large numbers of mix nodes. Even though the
adversary may know all senders and receivers in each
batch, she cannot link any sender and receiver unless all
nodes are compromised. cMix’s security model, coupled
with its wide range of applications being pursued, holds
promise for a new day in anonymous social interaction.

13

Acknowledgments

We thank the following people for helpful comments:
David Delatte, Russell Fink, Bryan Ford, Moritz Neikes,
and Dhananjay Phatak.

Sherman was supported in part by the National Sci-
ence Foundation under SFS grant 1241576 and a sub-
contract of INSuRE grant 1344369, and by the Depart-
ment of Defense under CAE-R grant H98230-15-10294.
Krasnova conducted this research within the Privacy
and Identity Lab (PI.lab, http://www.pilab.nl)
funded by SIDN.nl (http://www.sidn.nl/).

References
[1] ADIDA, B., AND WIKSTRÖM, D. Offline/online mixing. In

ICALP 2007 (2007), pp. 484–495.

[2] BACKES, M., GOLDBERG, I., KATE, A., AND MOHAMMADI,
E. Provably secure and practical onion routing. In Proc. 25th
IEEE Computer Security Foundations Symposium (CSF) (2012).

[3] BACKES, M., KATE, A., MANOHARAN, P., MEISER, S., AND
MOHAMMADI, E. AnoA: A framework for analyzing anony-
mous communication protocols. In 26th Computer Security
Foundations Symposium (CSF) (2013), pp. 163–178. http:
//eprint.iacr.org/2014/087.

[4] BACKES, M., KATE, A., MEISER, S., AND MOHAMMADI, E.
(nothing else) MATor(s): Monitoring the anonymity of Tor’s path
selection. In Proc. 21th ACM conference on Computer and Com-
munications Security (CCS 2014) (November 2014).

[5] BACKES, M., KATE, A., AND MOHAMMADI, E. Ace: An ef-
ficient key-exchange protocol for onion routing. In Proc. 11th
ACM Workshop on Privacy in the Electronic Society (WPES)
(2012), pp. 55–64.

[6] BANERJEE, A., AND PEIKERT, C. New and improved key-
homomorphic pseudorandom functions. IACR Cryptology ePrint
Archive 2014 (2014), 74.

[7] BENALOH, J. Simple verifiable elections. In Proc.
USENIX/Accurate Electronic Voting Technology Workshop (EVT)
(2006), pp. 5–5.

[8] BERTHOLD, O., AND LANGOS, H. Privacy Enhancing Tech-
nologies: Second International Workshop, PET 2002 San Fran-
cisco, CA, USA, April 14–15, 2002 Revised Papers. Springer
Berlin Heidelberg, 2003, ch. Dummy Traffic against Long Term
Intersection Attacks, pp. 110–128.

[9] BERTHOLD, O., PFITZMANN, A., AND STANDTKE, R. Design-
ing Privacy Enhancing Technologies: International Workshop on
Design Issues in Anonymity and Unobservability Berkeley, CA,
USA, July 25–26, 2000 Proceedings. Springer Berlin Heidelberg,
2001, ch. The Disadvantages of Free MIX Routes and How to
Overcome Them, pp. 30–45.

[10] BONEH, D., LEWI, K., MONTGOMERY, H. W., AND RAGHU-
NATHAN, A. Key homomorphic PRFs and their applications. In
Advances in Cryptology - CRYPTO 2013 (2013), pp. 410–428.

[11] CAMENISCH, J., AND LYSYANSKAYA, A. A formal treatment
of onion routing. In Advances in Cryptology — CRYPTO (2005),
pp. 169–187.

[12] CASTAGNOS, G., AND LAGUILLAUMIE, F. Linearly homomor-
phic encryption from $$\mathsf {DDH}$$. In Topics in Cryp-
tology - CT-RSA 2015 (2015), pp. 487–505.

[13] CHAUM, D. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM 4, 2 (1981),
84–88.

[14] CHEN, C., ASONI, D. E., BARRERA, D., DANEZIS, G., AND
PERRIG, A. HORNET: high-speed onion routing at the network
layer. In Proc. 22nd ACM Conference on Computer and Commu-
nications Security (2015), pp. 1441–1454.

[15] COX, J. Court docs show a university helped FBI bust Silk
Road 2, child porn suspects. Motherboard, November 2015.
http://motherboard.vice.com/read/court-docs-
show-a-university-helped-fbi-bust-silk-
road-2-child-porn-suspects?gbwlbe.

[16] DANEZIS, G. Privacy Enhancing Technologies: 4th Interna-
tional Workshop, PET 2004, Toronto, Canada, May 26-28, 2004.
Revised Selected Papers. Springer Berlin Heidelberg, 2005,
ch. The Traffic Analysis of Continuous-Time Mixes, pp. 35–50.

[17] DANEZIS, G., DIAZ, C., AND TRONCOSO, C. Privacy En-
hancing Technologies: 7th International Symposium, PET 2007
Ottawa, Canada, June 20-22, 2007 Revised Selected Papers.
Springer Berlin Heidelberg, 2007, ch. Two-Sided Statistical Dis-
closure Attack, pp. 30–44.

[18] DANEZIS, G., DINGLEDINE, R., AND MATHEWSON, N.
Mixminion: Design of a Type III anonymous remailer protocol.
In Proc. 24th IEEE Symposium on Security & Privacy (2003),
pp. 2–15.

[19] DANEZIS, G., AND GOLDBERG, I. Sphinx: A compact and
provably secure mix format. In Proc. 30th IEEE Symposium on
Security & Privacy (2009), pp. 269–282.

[20] DANEZIS, G., AND LAURIE, B. Minx: A simple and efficient
anonymous packet format. In Proc. 3rd ACM Workshop on Pri-
vacy in the Electronic Society (WPES) (2004), pp. 59–65.

[21] DANEZIS, G., AND SERJANTOV, A. Information Hiding: 6th
International Workshop, IH 2004, Toronto, Canada, May 23-25,
2004, Revised Selected Papers. Springer Berlin Heidelberg, 2005,
ch. Statistical Disclosure or Intersection Attacks on Anonymity
Systems, pp. 293–308.

[22] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In Proc. 13th USENIX Se-
curity Symposium (USENIX) (2004), pp. 303–320.

[23] EVANS, N. S., DINGLEDINE, R., AND GROTHOFF, C. A prac-
tical congestion attack on tor using long paths. In Proc. 18th
USENIX Security Symposium (USENIX) (2009), pp. 33–50.

[24] GOLDBERG, I., STEBILA, D., AND USTAOGLU, B. Anonymity
and one-way authentication in key exchange protocols. Designs,
Codes and Cryptography (2012), 1–25.

[25] GOLDSCHLAG, D. M., REED, M. G., AND SYVERSON, P. F.
Onion routing. Commun. ACM 42, 2 (1999), 39–41.

[26] GULCU, C., AND TSUDIK, G. Mixing email with Babel. In
Proc. of the Network and Distributed System Security Symposium
(NDSS ’96) (1996), pp. 2–16.

[27] JAKOBSSON, M., JUELS, A., AND RIVEST, R. L. Making mix
nets robust for electronic voting by randomized partial checking.
In Proc. 11th USENIX Security Symposium (USENIX) (2002),
pp. 339–353.

[28] JANSEN, R., TSCHORSCH, F., JOHNSON, A., AND SCHEUER-
MANN, B. The sniper attack: Anonymously deanonymizing and
disabling the Tor network. In (NDSS’14) (2014).

[29] JERICHOW, A., MLLER, J., PFITZMANN, A., PFITZMANN, B.,
AND WAIDNER, M. Real-time mixes: A bandwidth-efficient
anonymity protocol. IEEE Journal on Selected Areas in Com-
munications 16, 4 (1998), 495–509.

14

http://eprint.iacr.org/2014/087
http://eprint.iacr.org/2014/087
http://motherboard.vice.com/read/court-docs-show-a-university-helped-fbi-bust-silk-road-2-child-porn-suspects?gbwlbe
http://motherboard.vice.com/read/court-docs-show-a-university-helped-fbi-bust-silk-road-2-child-porn-suspects?gbwlbe
http://motherboard.vice.com/read/court-docs-show-a-university-helped-fbi-bust-silk-road-2-child-porn-suspects?gbwlbe

[30] JOHNSON, A., WACEK, C., JANSEN, R., SHERR, M., AND
SYVERSON, P. Users get routed: Traffic correlation on tor by re-
alistic adversaries. In Proceedings of the 20th ACM conference on
Computer and Communications Security (CCS 2013) (November
2013).

[31] KATE, A., AND GOLDBERG, I. Using Sphinx to improve onion
routing circuit construction. In Proc. 14th Conference on Finan-
cial Cryptography and Data Security (FC) (2010), pp. 359–366.

[32] KATE, A., ZAVERUCHA, G. M., AND GOLDBERG, I. Pairing-
based onion routing with improved forward secrecy. ACM Trans.
Inf. Syst. Secur. 13, 4 (2010), 29.

[33] KHAZAEI, S., AND WIKSTRM, D. Randomized partial checking
revisited. In Topics in Cryptology: CT-RSA 2013. 2013, pp. 115–
128.

[34] KÜSTERS, R., TRUDERUNG, T., AND VOGT, A. Formal anal-
ysis of chaumian mix nets with randomized partial checking. In
Proceedings of the 2014 IEEE Symposium on Security and Pri-
vacy (2014), SP ’14, IEEE Computer Society, pp. 343–358.

[35] MÖLLER, B. Provably secure public-key encryption for length-
preserving Chaumian mixes. In Proc. CT-RSA (2003), pp. 244–
262.

[36] MÖLLER, U., COTTRELL, L., PALFRADER, P., AND SAS-
SAMAN, L. Mixmaster protocol – Version 2. IETF Internet Draft,
2003.

[37] MURDOCH, S. J., AND DANEZIS, G. Low-cost traffic analysis
of Tor. In Proc. 26th IEEE Symposium on Security & Privacy
(2005), pp. 183–195.

[38] NAOR, M., PINKAS, B., AND REINGOLD, O. Distributed
pseudo-random functions and kdcs. In Advances in Cryptology–
EUROCRYPT’99 (1999), Springer, pp. 327–346.

[39] ØVERLIER, L., AND SYVERSON, P. Improving efficiency and
simplicity of Tor circuit establishment and hidden services. In
Proc. 7th Privacy Enhancing Technologies Symposium (PETS)
(2007), pp. 134–152.

[40] ØVERLIER, L., AND SYVERSON, P. F. Locating hidden servers.
In Proc. 27th IEEE Symposium on Security & Privacy (2006),
pp. 100–114.

[41] PFITZMANN, A., AND HANSEN, M. A terminology for talk-
ing about privacy by data minimization: Anonymity, unlinkabil-
ity, undetectability, unobservability, pseudonymity, and identity
management, Aug. 2010. v0.34.

[42] PFITZMANN, B., AND PFIZMANN, A. How to break the direct
RSA-implementation of mixes. In Advances in Cryptology —
EUROCRYPT ’89 (1990), pp. 373–381.

[43] RAYMOND, J.-F. Designing Privacy Enhancing Technologies:
International Workshop on Design Issues in Anonymity and Un-
observability Berkeley, CA, USA, July 25–26, 2000 Proceedings.
Springer Berlin Heidelberg, 2001, ch. Traffic Analysis: Proto-
cols, Attacks, Design Issues, and Open Problems, pp. 10–29.

[44] REED, M., SYVERSON, P., AND GOLDSCHLAG, D. Anony-
mous connections and onion routing. Selected Areas in Commu-
nications, IEEE Journal on 16, 4 (May 1998), 482–494.

[45] SERJANTOV, A., DINGLEDINE, R., AND SYVERSON, P. Infor-
mation Hiding: 5th International Workshop, IH 2002 Noordwi-
jkerhout, The Netherlands, October 7-9, 2002 Revised Papers.
Springer Berlin Heidelberg, 2003, ch. From a Trickle to a Flood:
Active Attacks on Several Mix Types, pp. 36–52.

[46] SERJANTOV, A., AND SEWELL, P. Computer Security – ES-
ORICS 2003: 8th European Symposium on Research in Com-
puter Security, Gjøvik, Norway, October 13-15, 2003. Proceed-
ings. Springer Berlin Heidelberg, 2003, ch. Passive Attack Anal-
ysis for Connection-Based Anonymity Systems, pp. 116–131.

[47] SHIMSHOCK, E., STAATS, M., AND HOPPER, N. Breaking and
provably fixing Minx. In Proc. 8th Privacy Enhancing Technolo-
gies Symposium (PETS) (2008), pp. 99–114.

[48] SUN, Y., EDMUNDSON, A., VANBEVER, L., LI, O., REXFORD,
J., CHIANG, M., AND MITTAL, P. Raptor: Routing attacks
on privacy in Tor. In Proc. 24th USENIX Security Symposium
(USENIX)) (2015), pp. 271–286.

[49] The Tor project. https://www.torproject.org/, 2003.
Accessed Nov 2015.

[50] WIKSTRÖM, D. A universally composable mix-net. In Proc.
of the 1st Theory of Cryptography Conference (TCC) (2004),
pp. 317–335.

An earlier version of this paper was submitted to the 25th
USENIX Security Symposium. February 23, 2016.

Appendices

A Postponed Security Analysis

In this section, we analyze our protocol using the
ideal/real world paradigm. We describe the ideal world,
which models the intended behavior of the system, in
terms of functionality and privacy. We then argue that
our core cMix protocol can be securely abstracted by the
ideal world.

A.1 Ideal World
In the ideal world we assume the existence of a trusted
third party (TTP). Each mix node in the network is con-
nected to every other node as well as to the TTP via a
private authenticated channel. In our ideal functionality,
we use the message-based state transitions and consider
submachines for all n nodes. To communicate with each
other through messages and data structures, these subma-
chines share a memory space in the functionality. Mes-
sages are sent using an instruction Send. An adversary
can observe, delay, or stop the messages going from one
node to another, but she cannot read the message con-
tents.

As in the rest of the paper, we denote a user as U j, (1≤
j ≤ m), cmix nodes as Ni, (1 ≤ i ≤ n), and M j denotes
a message of the user U j. An adversary is denoted as
A. To obtain a value v stored in a table T under key k,
we use the notation v← query(T,key = k), while Update
T ← (t) describes storing a tuple t in a table T .
Internal data structures.

The ideal functionality maintains the following data
structures. A list of incoming messages is stored in B. A
list of compromised nodes is maintained in C . The ad-
versary may corrupt some message while it is processed
at the compromised nodes by attaching a corrupt tag to
the message; however, she cannot check or remove the
tag until the message is output by the network handler. A

15

https://www.torproject.org/

upon An input(setup) :
B = Ju =C = /0,
Empty tables P and T

upon Receiving (send, U j,M j) :
if j /∈ Ju then .This user has not yet sent a message

Set Ju← Ju∪{ j}
Append M j to buffer B
if |B|= β then .the buffer is full

SENDMSG(FcMix, start)

upon Receiving(start) :
SENDMSG(FcMix, precomp)
Wait to receive(precomp finished)

.All nodes start (real-time) preprocessing simultaneously

.For forward direction dir = 1, and dir =−1 for backword
SENDMSG(N1, real-time, 1)
Wait to receive(real-time finished, 1) from Handler
SENDMSG(Handler, output, B)
Wait to receive(reply) B′ from Handler

.Reply messages have been collected at Handler
Replace the set B with the received set B′

SENDMSG(Nn, real-time, −1)
Wait to receive(real-time finished, −1) from

Handler
Send replies from B to corresponding U j

upon Receiving(precomp) :
SENDMSG(N1, precomp, 1)
Wait to receive(output precomp, 1) from Nn
SENDMSG(Nn, precomp, −1)
Wait to receive(output precomp, −1) from N1
SENDMSG(FcMix, precomp finished)

upon Receiving(compromise, Ni/U j) from A :
Set C ← C ∪{Ni/U j}

upon Receiving(corrupt, Ni, j) from A :
if Ni ∈ C then

Attach a corrupt tag to jth message in B during
the next processing at Ni

function SENDMSG(Recipient,header, payload)
Send(Sender, Recepient, header, |payload|) to A
Wait to receive forward from A
Send message (header, payload) to Recipient

Figure 4: Ideal Functionality for cMix network FcMix.

table of intermediate values stored by nodes and handler:
T with tuples (Ni,phase,direction,party), where party
indicates who stores the given record. A table P with
tuples (Ni,permutation) containing the precomputed per-
mutation of the node with ID Ni.
Ideal functionality. All cMix nodes are a part of the
ideal functionality, and thus they have access to appro-
priate internal data structures of the ideal functionality.

Nodes communicate with each other using these data
structures and the function SENDMSG(·,·), which trig-
gers the ideal functionality to send messages with the
help of communication model. For simplicity the ideal
functionality accepts only one input from each user, and
encompasses only one round of communication. Fig-
ure 4 presents the general ideal functionality in pseu-
docode; Figure 5 gives pseudocode for cMix node sub-
routines; and Figure 6 depicts subroutines for the net-
work handler. Unlike the cMix algorithm, FcMix does
not have any cryptographic operations such as encryp-
tion, decryption or commitments; the required security
properties are instead insured by the the TTP.

As discussed in 3.2, we assume a secure authenticated
channel between cMix nodes. Thus, the only influence
an attacker has on the messages sent between nodes is to
delay or drop them; this is reflected in the SENDMSG(·,·)
function. The only information an attacker learns is the
sender and recipient of the message, as well as its length.
To learn the messages sent and received by nodes, an at-
tacker compromises them. When a node is compromised,
it invokes compromised node function that forwards all
the messages the node receives to A and waits for instruc-
tions from him.

We define below the concept of simulation secu-
rity, which intuitively captures under which conditions a
cryptographic protocol constitutes a secure realization of
the ideal world defined above. PPT refers to probabilistic
polynomial time.

Definition 3 (Simulation Security). A cryptographic
protocol is simulation secure if, for all PPT adversaries
A in the real world who actively corrupt any arbitrary
subset of users and mix nodes in the anonymous commu-
nication network, there exists a simulator S in the ideal
world execution, which corrupts the same set of parties
and produces an output computationally indistinguish-
able to the output of A in the real world.

A.2 Simulation Security
Here, we perform an informal security analysis of the
cMix protocol. In particular, we present a proof sketch
to demonstrate that the cMix protocol with a CPA-secure
threshold group-homomorphic encryption scheme and
a perfectly hiding commitment scheme, securely real-
ize the ideal world presented in the previous subsection.
More formally,

Theorem 2 (Simulation Security). If E is a se-
cure threshold group-homomorphic encryption scheme
and (Commit,Open) is a non-Interactive Commitment
Scheme, and assuming that every pair of user and mix
node have agreed upon a longer term master key, then

16

upon Receiving(phase, postproc, dir) :
Update T ← (Ni,phase,dir,Handler)

upon Receiving(phase preproc, dir) :
.In the preprocess phase all nodes send messages to the han-
dler

Wait to receive(phase preproc, dir) from Ni, ∀i ∈
[1,n]

SENDMSG(N1, phase, dir, mixing)

upon Receiving(decrypt share, dir) :
Wait to receive(decrypt share, dir) from Ni, ∀i ∈

[1,n]
SENDMSG(FcMix, real-time finished, dir)

.Messages are retrieved and are ready to be delivered to recip-
ients

upon Receiving(output, B) from FcMix :
Forward messages in B to A

upon Receiving(return, B′) from A :
SENDMSG(FcMix, return, B′)

Figure 6: Subroutines of FcMix for Handler.

upon Receiving(phase, dir) :
.phase is equal to either real-time or precomp

if Ni ∈ C then
COMPROMISEDNODE(Ni, phase, dir)
return

if dir = 1 then
SENDMSG(Handler, phase, preproc, dir)
Wait to receive (phase, dir, mixing)

if (dir = 1) AND (phase = precomp) then
Create a random permutation pi
Update P← (Ni, pi)

else if phase = real-time then
pi← query(P,key = Ni)
B← pdir

i (B)

if (i+dir = n+1) OR (i+dir = 0) then .If Ni = Nn

and dir = 1 or Ni = N1 and dir =−1
SENDMSG(Ni, phase, postproc, dir), ∀i ∈ [1,n]
SENDMSG(Handler, phase, postproc, dir)

else
SENDMSG(N(i+dir), phase, dir)

upon Receiving(phase, postproc, dir) from Ni :
Update T ← (Ni,phase,dir,Ni)
if phase = real-time then

v← query(T,key = (Ni,precomp,dir,Ni))
if v 6=⊥ then

SENDMSG(Handler,decrypt share,dir)
else

SENDMSG(FcMix, output precomp, dir)

function COMPROMISEDNODE(M)
Send M to A
Wait to receive (N′i ,M

′) from A
Send message M′ to N′i

Figure 5: Subroutines of FcMix for node Ni.

the cMix protocol is simulation secure as defined in Def-
inition 1 in the random oracle model.

Proof Outline. The general idea of the proof is to pro-
vide a set of efficient simulators that run the corrupted
instances of the network in the ideal world and to simu-
late the inputs that those would expect in the real protocol
execution.

For every execution, our real as well as ideal worlds
are divided in two phases: precomputation phase and
real-time phase. These worlds also match in terms of
communication flows, and the simulators are left only
with the task of correctly realizing the cryptographic
messages.

For the precomputation phase, the core step of the
proof is to simulate the homomorphic encryption of ran-
dom R and K, chose random permutations for the cor-
rupted mix node, and then commit the decryption shares.
The users are not involved in this step. Importantly,
all elements exchanged by the nodes are either commit-
ments or encryptions of random messages. As we require
all of these outputs to hide statistically the inputs of the
respective protocols, it is easy for a simulator Spre to sim-
ulate the correct distribution of the input that the adver-
sary is expecting with random values in the appropriate
domain.

Simulating the real-time phase requires a more sophis-
ticated analysis. Here, a simulator Sreal needs to simulate
the protocols for the corrupted users along with corrupted
mix nodes. Messages from honest users remain perfectly
hidden from the adversary at all parts of the networks,
except when they are released to the network handler in
the forward direction, and when the responses from the
network handler are collected by the exit node.

There are two key challenges. The first challenge
is that Sreal needs to output the adversaries inputs (i.e.,
receive-message pairs input by the corrupted users) cor-
rectly in the end of the forward as well as backward
phase. The second challenge is that the adversary may
try to tag the simulated messages from the honest users,
when they are getting permuted at a corrupted node. In
that case, it should not be possible for the adversary to
remove the tag at some later stage at another corrupted
node.

We solve the first challenge as follows:
– In the forward direction, we open the commitments

to the shares such that they match the adversary mes-
sages.

17

– In the backward direction, we achieve this goal by
changing the quotients of the S and Ka′ values for all
honest nodes. Because the expected adversary response
messages are already known to Sreal , it can create the
respective versions for those to be collected by the ad-
versary by manipulating its quotient values.

The second challenge is easy to solve because the mes-
sages remain perfectly hidden from the adversary until
they are decrypted during the open algorithm of the de-
cryption step.

Therefore, using Spre and Sreal , it is possible to simu-
late the responses expected by the adversary. It is also
easy to see that both Spre and Sreal are efficient because
they can complete their tasks by simulating decryption
with help of commitments in the forward direction and
re-randomization (i.e., quotients of S and Ka′) in the
backward direction.

B Allowing Larger Messages

Our core cMix protocol only allows messages repre-
sentable as elements of the multiplicative group G. In
this section, we present an exposition of the idea to over-
come this limitation.

Our idea necessitates use of a key-homomorphic
PRF [6,10,39] along with a group homomorphic encryp-
tion scheme.
Key Homomorphic PRF. A PRF F : K ×X → Y
is called key homomorphic if F (k1,x)⊗F (k2,x) =
F (k1⊕ k2,x), where ⊗ and ⊕ are the group operations
defined in domains Y and K , respectively.
Additively homomorphic encryption. Let Epk(m1)
and Epk(m2) denote encryptions of m1 and m2 under
some public key pk, respectively. The encryption scheme
is homomorphic if Epk(m1)⊗Epk(m2) = Epk(m1⊕m2)
for some operations ⊗ and ⊕ defined in respective do-
mains (groups). The scheme is additively (multiplica-
tively) homomorphic if ⊕ represents the addition (multi-
plication) operation.

All known key homomorphic PRF constructions in
the literature have been additive homomorphic in na-
ture [6,10,39]. Therefore, we have to consider additively

homomorphic encryption scheme [12] here, to match
with the domain of the key of key-homomorphic PRF.

B.1 Construction
Here we specify the required modifications to cMix to
handle larger messages. ElGamal encryption employed
in the main body of the paper is multiplicatively homo-
morphic, and it has to be replaced by an additively ho-
momorphic encryption [12].

The precomputation phase will require the following
changes :

• In the preprocessing step, instead of sending
E (r−1

i), each node sends Epk(−ri) to the first node.
At the end of the step, the first node receives
⊗n

i=1Epk(−ri) = Epk(⊕n
i=1(−ri)) = Epk(−R) (say),

instead of Epk(⊗n
i=1(r

−1
i)) from the network han-

dler.

• In the mixing step, each node multiplies with
Epk(−si) , instead of E (s−1

i). Therefore, at the end
the step, the last node have Epk(Π(−R)⊕(−S)) , Π

denotes the aggregate permutation function used by
cMix nodes. Similar to the original protocol, this
is partially decrypted to get shares of (Π(−R)⊕
(−S)) = D(say).

Now if we have a huge message, we can divide the
message into multiple segments Ms , where s is the seg-
ment id. For each segment, a randomly generated tag
value, t, is used (alternatively, it can be the segment id).

In Real-time phase, instead of multiplying with the
ri and si values each node multiplies with F (ri, t) and
F (si, t) values respectively. So, after Mixing step the
last node will have Ms ⊗F (Π(R)⊕ S, t) , where t is
the tag corresponding to segment Ms . After the last
node has received all the segments, the shares are recon-
structed to obtain D, and then function F (D, t) is com-
puted for each t . The segments are retrieved by comput-
ing Ms⊗F (Π(R)⊕S, t)⊗F (D, t). The last node com-
bines the segments to reconstruct the whole message, and
sends the message to the receiver.

18

Figure 7: The cMix protocol: precomputation and real-time computation (forward paths).

19

	Introduction
	Background and Related Work
	Mix Networks
	Onion Routing

	Overview of cMix
	Communication Model
	Adversarial Model
	Solution Overview

	The Core cMix Protocol
	Preliminaries
	Detailed Description
	Precomputation Phase
	Real-time Phase

	Detecting Tagging Attacks

	Performance Analysis
	Security and Anonymity Analyses
	Simulation Security Analysis
	Anonymity Analysis
	Analyzing Standard Mixnet Attacks

	Special Features and Extensions
	Including Recipient Keys
	End-to-end Sender Authentication
	Protocol Integrity

	Implementations and Benchmarks
	Discussion
	Node Failure
	Integrating cMix into Privategrity
	Future Steps

	Conclusion
	Postponed Security Analysis
	Ideal World

	Allowing Larger Messages
	Construction

