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Abstract 

A nwnber of organizations who do not trust one another can build and 

maintain a highly-secured computer system that they can all trust (if they can 

agree on a workable design). A variety of examples from both the public and 

private sector illustrale the need for these systems. Cryptographic techniques 

make such systems practical. by allowing stored and communicated data to be 

protected while only a small mechanism, called a vault, need be physically 

secured. Once a vault has been inspected and sealed, any attempt to open it will 

cause it to destroy its own information content, rendering the attack useless. A 

decision by a group of trustees can allow such a vault-or even a physically des-

troyed vault-to be re-established safely. 

Networks of vaults can allow reliable operation even in the face of communi-

cation channel and vault failures. Networks also have several security advan-

tages over single vault systems: (1) information that is no longer needed can be 

permanently destroyed, (2) comprehensive records of security relevant actions 

by the trustees can be maintained, and (3) abuse of the trustees' power requires 

advance notice. Algorithms which implement such a network are presented in a 

specially adapted formal specification language; examples of the algorithms' use 

are given; analysis of communication, memory and time requirements are 

presented; and security and reliability properties are proved. 

Each of some mutually suspicious groups can supply part of a vault, in such 

a way that each group need only trust its part in order to be able to trust the 

entire vault. Another approach to construction is based on public selection of a 

system's component parts at random from a large store of equivalent parts. The 

practicality and ramifications of the ideas presented are also considered. 
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Chapter I 

Introduction 

§1 Problem Statement & Motivation 

This section defines the increasingly important problem of providing 

computer systems that can be trusted by groups who don't neces-

sarily trust one another. Example applications motivate the need for 

solutions and illustrate the nature of the solutions proposed. 

Concern over the trustworthiness of computer systems is growing as the 

use of computers becomes more pervasive. It is not enough that the organiza-

tion maintaining a computer system trusts it; many individuals and organiza-

tions may need to trust a particular computer system. 

For example. consider a computer that maintains the checking account bal-

ances of a bank. The bank is concerned, among other things, about possible loss 

of balance records. The Federal Reserve Bank must know the total of these bal-

ances, to ensure that the legally required percentage of the balances is on depo-

sit with it. The Internal Revenue Service requires the ability to check the bal-

ance of an individual's account. Individuals, or a consumer organization acting 

on tbeir behalf, may wish to ensure that disclosures are made known to those 
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involved, and that inquiries can never be made on information that is more than 

a few years old. 

There are many other similar applications of computers which involve 

private sector records related to consumers, such as those arising from credit, 

insurance, health care, and employment relationships. Public sector record 

keeping, in such areas as tax, social security, education, and military service 

are also quite similar. 

Another class of applications involves information about public or private 

sector organizations as opposed to information about individuals. For example, 

various international agencies, such as the International Atomic Energy Agency, 

must be able to ensure the secrecy of the information they receive from their 

member nations. Numerous industry organizations develop statistics from 

confidential information submitted to them by their member corporations. 

Brokers and other middlemen in the mailing list industry must be able to a 

ensure the confidentiality of the lists they receive from a variety of list compil-

ing organizations for purposes of removal of duplications or various kinds of 

prescreening. 

AU of these applications involve one group who owns or controls the com-

puter system, and who is particularly concerned with reliably maintaining the 

operation of the system and with ensuring the survival of the data maintained by 

the system-they will be called the "trustees." A second group or set of groups 

are primarily concerned about the confidentiality of the data which relates to 

them that is available to the system. There may be a third group or set of 

groups, which may overlap with the first and second groups, who are concerned 

about the correctness of the operation of the system. 

Of course, many applications of computer systems used solely within large 

organizations have a similar flavor, because such organizations are often com-

posed of groups or individuals with conflicting interests. 
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§2 Overview & Chapter Summaries 

The basic idea of the proposed systems is introduced and the organi-

zation of the thesis is presented as a guide to the reader. 

This thesis offers a system design and feasibility argument for computer 

systems which can be established, maintained and trusted by mutually suspi-

cious groups. Such systems can be used to meet the requirements of applica-

tions like those mentioned in the previous section, if a workable design can be 

agreed on by the participants. The cryptographic techniques which form the 

basis of the approach are introduced in the next chapter, Chapter II. They make 

such systems practical by the mechanism upon which reliability and 

security depend. This mechanism-the processor and its high-speed store-will 

be called a vault. Vaults will be constructed in a way that can be verified by all 

the participants, or by any interested party, and then they will be physically 

secured, such as by being shielded within a small safe-like container. 

In addition to introducing the cryptographic techniques, and presenting the 

relationship of the present work to the literature, Chapter II also surveys the 

varied literature which lends support to the practicality of the ideas presented: 

applications of cryptography; design and verification of security properties; 

securing apparatus from tampering and probing; and survivability of equipment, 

data and communication. Chapter III abstracts from the techniques of Chapter 

II the assumptions which form the basis of the proofs contained in a later 

chapter. At the same time, Chapter II also presents some important underlying 

assumptions which, although they do not enter directly into the proofs, influence 

the nature of the proposed systems. Chapter IV introduces a system based on a 

single vault. This serves the dual purpose of introducing a number of concepts 

used in the proposed multiple vault systems, and pointing out a number of 

shortcomings of single vault systems which are solved by the systems to be pro-

posed. 
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The algorithms which define the operation of the multiple vault systems to 

be proposed are presented in Chapter V, using a specially adapted formal 

specification language. Then Chapter VI provides an example of the use of the 

algorithms, which demonstrates how a multiple vault system can be established. 

Proofs of various security and reliability properties are presented in Chapter VII, 

which make use of the assumptions of Chapter III. Analysis of the performance 

issues of space, communication, and time requirements of systems based on the 

algorithms of Chapter V is presented in Chapter VIII. Chapter IX presents tech-

niques for constructing and placing into operation a secured vault, while main-

taining the trust of potentially mutually suspicious groups. The final chapter, 

Chapter X, briefly considers work remaining and the implications of the present 

work. 

Before delving into the supporting literature, however, it is important to 

indicate some of the unique contributions of the present work. 

§3 What's So New About All This? 

Suggested are the novelty and advantages of the present work over 

other work known to the author. 

This thesis addresses the problem of establishing and maintaining com-

puter systems that can be trusted by those who don't necessarily trust one 

another. This particular formulation of the problem is believed to be a contribu-

tion in its own right. In addition, the present work combines an unusually wide 

diversity of security technologies. The techniques presented for allowing con-

struction of apparatus which can be trusted by mutually suspicious groups also 

appear to be new. 

The detailed algorithms presented are the result of several major itera-

tions, and are believed to take into account most of the important issues. The 

use of cryptography is central to many of the algorithms and is quite a bit more 
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complex than that reported elsewhere. This motivated substantial extension of 

a previously defined specification language in order to integrate a variety of 

cryptographic techniques into the type-checking and parameter-passing 

mechanisms in a convenient way. Also, a new general problem for computer 

network security, "the covert partitioning problem," is introduced along with 

algorithms which provide a solution and proofs of their correctness. 
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Chapter II 

Survey of the Literature 

Considered is some of the literature which lends support to the feasi-

bility argument of the present work. and some related work. 

This thesis puts forward a proposal for a new kind of highly secure com-

puter system. The technologies upon which these systems must be based are 

quite diverse and cut across some traditional boundaries. Nevertheless, an 

attempt will be made to indicate the feasibility of the proposed systems by 

pointing to relevant surveys or directly into the literature. 

§1 Cryptographic Algorithms 

The various types of cryptographic algorithms used in the present 

work are discussed with reference to the relevant literature. 

Information is encrypted to allow it to pass safely through a potentially hos-

tile environment. 
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Conventional Cryptography 

Secrecy. Traditionally. concern has centered on providing the 

confidentiality of message content. Consequently. cryptographic techniques 

were devised to make it very difficult (in some cases impossible) to transform 

encrypted information back to its unencrypted form without possession of a 

secret piece of information. called a key. Two correspondents who were the sole 

possessors of a key could use it to maintain the secrecy of the message content 

of their correspondences. Note that the cryptographic algorithms themselves 

are assumed to be public knowledge; only the key need be kept secret. 

Ultimately. all cryptographic algorithms can be thought of as transforming 

symbols into other symbols. With a Captain Midnight decoder badge. the badge 

is the key. and letters are mapped into other letters. The un-breakable Vernam 

cipher maps only single bits into other bits. by adding each bit modulo two with 

a different key bit [Kahn 67]. On the other extreme. block cryptographic algo-

rithms map large strings of bits. called blocks. into other blocks. The National 

Data Encryption Standard. for example. maps 64 bit blocks into 64 bit blocks. 

using a 56 bit key [NBS 77]. Many blocks can be "chained" together during 

encryption. effectively forming a single large block [Feistel 70]. 

Authentication. The present work assumes the use of block schemes. like 

the Data Encryption Standard. which make it very difficult to modify part of an 

encrypted block of information without causing drastic changes to the entire 

decrypted block. A large serial number can be appended to a block before 

encryption; its presence after decryption provides authentica.tion of the block 

as a valid block that has not been altered. In such systems. it becomes 

extremely difficult for someone without a key to create a block that will contain 

a desired serial number when it is decrypted by a keyholder. Two communi-

cants with a common key can converse using encrypted blocks of data. checking 
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the serial number of each received block to ensure that it has arrived in the 

proper sequence, and to ensure that it has not been altered [Feistel, Notz and 

Smith 75]. 

Pu blie Key Cryptography 

The cryptographic techniques considered so far have the unfortunate pro-

perty that a common key must be distributed to the communicants, while it is 

kept secret from everyone else. In contrast, consider a fundamentally different 

sort of cryptographic algorithm independently proposed by Diffie and Hellman 

[76], and Merkle [78]. To use these algorithms, each participant creates a 

private key, that is never revealed to anyone else. Only a suitably related public 

key is made known to everyone. Here we will be concerned with public key cryp-

tographic algorithms (like that of Rivest, Shamir and Adleman [78]) where the 

two keys are inverses of one another, in the sense that a block encrypted with 

one can be decrypted only with the other. 

Sealing. Public key cryptography can be used to provide the secrecy of 

message content. A confidential message can safely be sent if it is first sealo.d, 

an operation which includes encryption with the recipient's public key. Only the 

intended recipient can decrypt the received message-because the correspond-

ing private key must be used to decrypt it. A large random number is joined to 

the message during sealing, to counter two potential threats: (1) if the same 

message is sent more than once, such a message will be revealed as such to an 

eavesdropper; (2) an eavesdropper's guess of the message could be verified by 

encrypting the guess with the public key and then checking if the resulting bits 

are identical to the sealed message. 

Signing. Authentication in public key cryptosystems is much more useful 

than that provided by conventional cryptography, because only a public key is 
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needed to authenticate a message, and hence anyone, not just the holder of a 

secret key. can check the authenticity of messages. Someone signs a message 

by encrypting it with their own private key. If a serial number of some agreed 

upon structure, such as all zeros for example. is joined to the message during 

signing, then its presence after decryption with the corresponding public key 

authenticates the signature. 

Com pression Functions 

The so called "one-way" functions were introduced by Purdy [74] as part of 

the now familiar method of protecting passwords stored in computer systems. 

The one-way function and the image of all the passwords under the function are 

publicly readable, but they must be protected from alteration. Thus. the ideal 

one-way function is easily computed, but the inverse is computationally infeasi-

ble. 

For the present work, a compression function will be a special kind of one-

way function which maps an arbitrarily large domain into a fixed range, but 

which is practically impossible to invert. Such functions are quite handy since 

they in effect allow a relatively small number of signed bits to authenticate a 

large number of bits. Similar concepts have been described by various authors. 

(see Feistel [70] or Needham and Schroeder [78] for example.) 

Key Generation 

The automated generation of true physical random numbers has received 

some attention in the literature (see Knuth [7] for example). Sampling the noise 

generated by specially fabricated noise diodes seems to be an excellent source 

of raw bits (thermal noise and radioactive decay also seem good, but more 

cumbersome), which must then be corrected for bias in the detector. 
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Techniques for perfect correction of independent events with a fixed-bias detec-

tor are widely known. (Notice. however. that detector drift and physicl depen-

dencies in the source contribute to less than perfectly independent raw bits.) 

The simplest such technique takes as input successive pairs of independent bits 

and outputs say a 1 bit for pairs of the form 1 O. outputs a 0 bit for pairs of the 

form 0 1. and produces no output for the other possible pairs 1 1 and 0 0 [Von 

Neuman 51: Gill 72]. It is also possible to combine many random numbers of 

some less than optimal entropy to produce a single number of increased 

entropy. such as by adding many numbers bit-wise modulo-two. 

While details are beyond the scope of the present work. it is important to 

notice that many cryptographic algorithms may be quite weak for some choices 

of key. Care must be taken to determine if a candidate key is such a weak key 

and to randomly create another candidate in such a case. 

§2 Applications of Cryptography 

Discusscd are some of the rclatively few publications which assume 

good cryptographic algorithms and go on to consider applications. 

Many kinds of security rely on the secrecy of their techniques. In contrast. 

much of the open literature on cryptography owes its existence to the premise 

that such secrecy may not be necessary or even desirable with cryptographic 

techniques. Shannon [49] assumes that the cryptographic algorithm is known to 

the "enemy" and only the key is secret. KerckhofIs [1883] made a similar 

assumption. Baran [64] provides convincing arguments for making public the 

details of what he calls "cryptographic design" which includes the "hardware 

details". 

There has been much work that considers the use of encryption for com-

munications security and data security. The remainder of this section mentions 

some of the more relevant work in these areas. Work with a heavy emphasis on 
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the cryptographic algorithms themselves has been omitted. however. since this 

thesis is not concerned with particular cryptographic algorithms. 

Communications security 

Protocols that provide secrecy and authentication of communication 

between two devices using conventional cryptography are relatively straightfor-

ward and have been touched on by many authors. among them are Feistel, Notz. 

and Smith [75] and Kent [76]. Public key protocols for this kind of communica-

tion are similar to those based on conventional cryptography [Needham and 

Schroeder 78]. 

Key distribution. With conventional cryptography. the channel used to ori-

ginally transmit the key from one participant to the other must provide both 

secrecy and authentication. Also. O(n2} keys can be required when n partici-

pants wish to converse amongst themselves using conventional cryptography. 

Heinrich and Kaufman [76] and Branstad [75] described an approach to distri-

buting these keys that uses a central trusted device. (The techniques of the 

present work would be ideal if such an approach were to be used in an applica-

tion with mutually suspicious participants.) Needham and Schroeder [78] 

describe both a centralized scheme and one in which the participants each use a 

trusted local device. all local devices having cryptographically secured commun-

ication amongst themselves. Diffie and Hellman [76] describe a scheme (devised 

with the collaboration of Lamport) which can only be corrupted by compromise 

of all of some fixed set of trusted devices. 

The key distribution problem was at least part of the impetus for the two 

independent proposals of public key cryptography (Merkel [78] and Diffie and 

Hellman [76]). Only CXn) keys are required by systems of the kind proposed by 

Difiie and Hellman. The key distribution problem is further simplified because 
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neither kind of system requires keys to be kept secret during distribution-only 

their authenticity must be ensured. 

Tra.ffic Analysis. The problem of keeping confidential who converses with 

whom, when and how much they converse. will become increasingly important 

with the growth of electronic mail. The problem of keeping an adversary from 

learning anything about the timing. amount or routing of messages in a com-

munication system has been called the "traffic analysis problem. II Baran [64] 

has solved the traffic analysis problem for networks using conventional cryptog-

raphy. but his approach requires each participant to trust a common authority. 

In contrast. a system based on public key cryptography [Chaum 81]. can be 

compromised only by subversion or conspiracy of all of a set of authorities. In 

the limiting case, each participant can be an authority. 

The last approach allows one correspondent to remain anonymous to a 

second, while allowing the second to respond via an untraceable return address. 

This permits rosters of untraceable digital pseudonyms to be formed from 

selected applications. Applicants retain the exclusive ability to make digital sig-

natures corresponding to their pseUdonyms. Elections in which any interested 

party can verify that the ballots have been properly counted are possible if 

anonymously mailed ballots are signed with pseUdonyms from a roster of 

registered voters. Another use allows an individual to correspond with a record-

keeping organization under a unique pseudonym which appears in a roster of 

acceptable clients. 

Data Security 

Conventional cryptography has received some consideration as a technique I 

for protecting stored information. The use of encryption to protect objects 

within operating systems. first suggested by Peterson and Turn [67]. suffers 
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from the problem of key management. One might argue that whatever tech-

niques were applied to protect the keys. might have been applied to the data 

itself. thus eliminating the need for encryption. But. advantage can be taken of 

the small. fixed-size of the keys. 

The use of cryptographic techniques to protect data stored in a potentially 

hostile environment are relevant to the present work. There are three impor-

tant considerations for protecting stored data, each corresponding to one of the 

issues of secrecy. authentication, and traffic analysis in the context of communi-

cation. First, if the same data is stored more than once under the same key. 

then some non-repeating data, such as the random serial number used in seal-

ing, must be included in the data lest the repetition be revealed. Second, it may 

not be sufIicient to be able to authenticate the memory location associated with 

a page received from storage if data has been stored at that location more than 

once; a solution to this, the "most recentness" problem, must be provided so 

that the page can be authenticated as the last copy written. (Solutions to this 

problem which also solve the first problem are presented in the work of Bayer 

and Metzger [76] mentioned below.) Finally. the pattern of read and write 

accesses must be considered as a possible source of information to an adver-

sary. A most general solution to this last problem. which makes no assumptions 

about the application program, might be to alternately read every stored loca-

tion ever written and then to perform a fixed number of writes. Clearly this is 

not an attractive solution. and much more reasonable solutions, possibly includ-

ing the introduction of some bogus requests. can be developed by careful design 

of the application program. 

An interesting technique has been developed for encrypting information 

which is divided into pages. A different key is used to encrypt each page. The 

key used for a particular page is produced by encrypting the address of the 

page using a master key. Mapped addresses (so that addresses can be changed 
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for new versions of a page) and physical addresses are considered by Bayer and 

Metzger [76]. Content addresses have been dealt with by Gudes, Koch, and Stabl 

[70]; and by Flynn and Campasano [78]. 

Some simple systems have actually been built that encrypt data at a secure 

site before transmitting it to an un-secured data base management system 

[Notz and Smith 72; Carson, Summers and Welch 77]. The terminals or their 

users are presumably the only holders of the keys so that only they can access 

the data. 

§3 Partial Key Techniques 

Various solutions to the problem of dividing a key, or other secret 

information, between individuals or other entities are presented. 

Feistel [70] describes schemes in which a cryptographic key is divided into 

n parts, each part is given to a different person, and the original key can be re-

created by combining all n parts. These schemes use random bits for each part 

except the last, which is chosen so that the desired key is the bit-wise modulo-

two sum of this last part and the rest of the parts. A disadvantage of such 

schemes is that if just one part is lost, then the original key can not be re-

created. 

The technical report on which this thesis is based (Chaum [79]) introduced 

a scheme for dividing a key into parts, called partial keys, in which some 

selected subsets of the partial keys are sufficient to re-create the original key. 

The approach used was based on multiple encryption. Independently, and at 

about the same time, Blakley [79] and Shamir [79] published more elegant 

schemes which do not have the inherent flexibility of the multiple encryption 

schemes, but can use less space and run faster for large n when the required 

sets are all possible sets with cardinality greater than some fixed number. 

These techniques are unbreakable as is the Vernam cipher mentioned earlier, 
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and the Vernam cipher has even been called a degenerate case of these tech-

niques [Blakley 80]. Further work by Azmuth and Bloom [80] includes means for 

determining which if any partial keys submitted for a re-creation are bogus. 

§4 Computer Security 

The field of computer security is divided into four areas, and each is 

dealt with in a separate subsection. 

Computer security is the topic of several journals, several annual confer-

ences, dozens of books, thousands of articles in the technical literature, and 

many more pieces in the popular press. It is far beyond the scope of the 

present work to try to survey this vast literature. 

For the purposes of this section, the field of computer security is divided 

into four broad groups of concerns: 

(1) issues related to personnel and their access to facilities; 

(2) design of desired security properties; 

(3) verification of implementation of the desired security properties; 

(4) physical security of equipment against probing and modification. 

Survivability issues are covered in the next section. 

Personnel 

Discussion of personnel issues are liberally sprinkled throughout the com-

puter security literature, particularly that aimed at the practitioner. From the 

technical point of view, the major issues with respect to personnel are how to 

reduce the exposure to personnel, and then how to force conspiracies of persons 

for what exposure remains. Essentially two ways to force conspiracy are used. 

The most desirable mechanisms are those which can force equally knowledge-
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able persons to conspire. For example. the so called "two man rule." used for 

control of nuclear weapons. may require that two keys located at substantial dis-

tance from one another be turned simultaneously. A somewhat less appealing 

but much more widely used approach is to attempt to limit the knowledge of 

individuals to such narrow aspects of a system that they must conspire with oth-

ers in order to have the knowledge and skills required to compromise the sys-

tem (see [FDIC 77] for example). Since the present proposal uses equipment 

which is essentially inaccessible to personnel, and techniques which are a gen-

eralization and extension of the two man rule. many of the personnel issues are 

not particularly relevant. 

Other questions raised in this literature include: How can trustworthy per-

sonnel be selected? What sort of "access control" mechanisms are appropriate 

for controlling the movements of pe ople into and within a facility? What is the 

best way to motivate compliance with security relevant rules? and How can the 

user interface of the security mechanism best be designed so as not to 

encourage bypassing by the user? 

In any system in which personnel must be trusted. the possibility always 

exists of influence by positive means such as bribery. negative means such as 

blackmail. and the combination. Also. one can never be sure that a person's 

behavior will remain uniform. For example. stress in personal life, breakdown, 

suggestion and drugs can cause substantial changes in behavior. 

Protection 

In some dedicated applications. such as some of those mentioned earlier for 

which the present work may be particularly well suited. answers to the question 

Who can make what kind of accesses to what data? may be quite obvious and 

simple. In more general purpose systems. such as operating systems and data-
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base management systems. it may be difficult to decide on a way to describe the 

kinds of accesses allowed. There may be various design objectives. such as. 

closeness of fit to anticipated application requirements. ease of user under-

standing. implementation efficiency. appropriate default rights. congruence with 

user motivation. and convenience of use. 

For operating systems. the proposed access control models are often 

divided between the "access control matrix" approaches [Lampson 74]. and the 

"information flow" approaches [Denning 76]. In the access control model. a 

matrix contains the type of access allowed by each of a set of subjects to each of 

a set of objects. Data flow is a generalization of the U.S. classification scheme. 

which was based on the British scheme. where information is allowed to flow up 

to higher classifications but not down to lower classifications. Recently. Stough-

ton [81] has proposed a synthesis of the two approaches. In database manage-

ment systems. the protection structures proposed may be divided between the 

access control style and the value dependent. An interesting approach called 

query modification has been suggested [Stonebraker 75]. in which additional 

restrictions are automatically appended to each query before it can be pro-

cessed. 

The general case is further complicated because provisions must be made 

which allow access rights to be changed and even for the rights related to who 

can change access rights to themselves be changed. Much theoretical work, 

such as that of Harrison. Ruzzo & Ullman [76]. demonstrates that it may not be 

practical to determine who ultimately may access what. even with rather limited 

kinds of transfer rights. 

In general. when preventive means are not available. it may still be possible 

to preserve a record which reveals abuses. Thus. various "logging" or "audit 

trail" techniques have been proposed. such as those of Weissman [69]. 
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Verification 

]n the present context, verification is intended to mean the process of 

developing certainty that some formally described mechanism has some desired 

properties; the term certification is used here to mean that some physical 

mechanism "conforms" to the formal description. This subsection points into 

the relevent literature on verification; little has been found in the literature on 

certification (but see Weisman [69]), a topic which is covered in Chapter IX. The 

field of program verification was given a formal foundation by Floyd [67J. He 

defined a program to be "partially correct" (with respect to some input and out-

put assertions) if the truth of the input assertions before program execution 

guarantees the truth of the output assertions after program termination. (A 

"totally correct" program was a partially correct program whose execution is 

guaranteed to terminate.) He gave a method based on inductive assertions for 

determining partial correctness of programs. Proof techniques for parallel pro-

grams have also appeared (see OVlricki and Gries [76] for example). Proving pro-

perties about cryptographic protocols is also receiving attention (see Dolev and 

Yao [81] for example). 

A variety of automated specification and verification systems have been 

developed and are extensively used for security work (see Cheheyl et al [Bl] for 

a recent survey). In such systems, formal specification languages are used to 

define the intended function of a module, while omitting as much implementa-

tion detail as possible (see Rammamoorthy and So [Bl] for a survey). For exam-

ple, the HDM (Hierarchical Design Methodology) [Robinson and Levit 77; Levitt, 

Robinson and Silverberg 79] uses the specification language presented by Parnas 

[72] to describe systems as a hierarchy of abstract machines. (The Parnas 

specification language is extended in Chapter V and used to present the algo-

rithms proposed here.) Global and local security properties of programs execut-

ing on multiple processors, and employing cryptographic techniques, of much 
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the same order of complexity as those algorithms presented in Chapter V have 

recently been verified [Good et al 82]. 

§5 Physical Security 

The little open literature on protecting equipment from probing and 

modification is considered. 

Shielding techniques for protecting mechanisms against analysis of their 

radiated signal energy. or probing by externally supplied energy. seem to be 

rather well understood. and are covered by the classified TEMPEST 

specifications. 

Tamper-safing systems can be divided between those which merely indicate 

tampering to an inspector. and those systems which can detect tampering and 

can respond by. for example. destroying some secret information. In some 

cases it may be desirable to augment a tamper-Tesponding system with tamper-

indicating techniques and periodic inspections. (See the next chapter for more 

on combinations.) There is a small amount of unclassified literature on tamper-

indicating techniques [Poli 78]. but almost nothing on high level tamper-

responding techniques-but see Chaum [82]. 

One approach to the problems of TEMPEST and tamper-safing includes plac-

ing apparatus to be protected in relatively inaccessible locations. For example, 

satellites or satellite platforms may provide an ideal location because it 

becomes very difficult to surreptitiously compromise equipment in such a visi-

ble and inaccessible location, or to get close enough to obtain an acceptable sig-

nal to noise ratio from even moderately well shielded equipment. (Such loca-

tions may also be quite attractive because of the kinds of communication chan-

nel typically provided by satellites, as mentioned later.) 

Another location which has great potential. and has actually been used for 

protecting apparatus (see Sandia [81] for example), is the boltom of well holes 
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in rock formations. Seismic sensors do a good job of detecting attempts to 

come even moderately close to the protected apparatus. 

Installations in office building environments are also possible. While it is 

beyond the scope of the present work to discuss the various possibilities for 

solving these problems in less remote locations, it may suffice to point out that 

tamper safing and shielding have obvious importance in intelligence and military 

systems, and one can safely assume that these problems have been adequately 

solved for these applications. Thus, it appears that the physical security 

requirements of the applications considered earlier are quite reasonable. 

§6 Survivability 

This section surveys the issues in survivable systems, which include 

barriers or hardening, redundant communication, redundant 

storage, and reliable mechanisms. 

As in the previous section, the requirements of the kinds of applications 

considered will appear quite practical based on the following discussion. 

Barriers 

The problem of providing substantial resource requirements and delays to 

would be penetrators has been referred to as the ba.rriers problem in the 

nuclear safeguards literature [Sandia 7S]. Acceptable barriers for some applica-

tions can be provided by concrete and steel structures, but more sophisticated 

barriers are constantly under development by the manufacturers of beller safes 

and vaults. Such developments are rarely published and are only alluded to in 

sales literature. Unfortunately, the so called "shaped charge" can almost 

instantly penetrate any barrier of reasonable thickness. But, quite satisfactory 

barriers can be provided by placing equipment to be protected in inaccessible 
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locations, such as the well holes described in the previous section. 

Reliable Equipment 

Largely because of developments in space and aviation, computer systems 

and related equipment have been developed which use redundant mechanism to 

achieve extremely high reliability. (See Randell et al [78] for a relat.ively recent 

survey.) Some of these advances are already enjoying widespread use in earth-

bound business transaction processing systems, and are likely to become 

increasingly more widespread because of trends such as decreasing hardware 

costs and increased dependency on real-time systems. Thus, for the sorts of 

applications the present work is directed at. highly reliable systems may be 

rather common. 

Survivability of Data 

One very nice thing about safely encrypted data is t.hat a proliferation of 

copies does not pose any additional threat to security. but it has great potential 

for increased survivability. Multiple copies of encrypted data can exist at a 

variety of sites. some of which may be hardened. Also, when broadcast style 

communic1ition channels are used, locations which are maintaining copies of 

data may not even be known to the issuer of the data. and might therefor.e be 

extremely difficult for an adversary to even det.ect. Today. several companies 

provide secure data storage sites for magnetic recording media. Some of the 

facilities are located deep within mountains while another is in an abandoned 

telephone switching center which was hardened to withstand a several megaton 

blast. 
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Survivability of Communication 

The ability to communicate in spite of an adversary is of obvious impor-

tance for military applications. The use of redundant and alternate channels is 

one standard approach to the problem [Frank & Frisch 70]. Other more 

effective approaches are under development and in use, however, they receive 

little coverage in the literature. One important approach is the use of crypto-

graphically controlled "spread spectrum" radio techniques, which provide a 

broadcast signal which is nearly impossible to jam [Haakinson 78]. Also highly 

redundant error correcting codes can greatly increase the survivability of 

transmissions in a noisy environment. 

§ 7 Related Work 

A few extended citations give credit to some relevant earlier work. 

1t seems appropriat.e to include t.his section to put the present. work in per-

spective with some proposals of others addressed at similar problems. 

Feistel might be called the father of modern conventional public crypt.ogra-

phy. His plan and motivation for non-military use of cryptography comes 

through in the first part of his int.roduction to "Cryptographic Coding for Data-

Bank Privacy," which is excerpted below. This document remained classified 

"IBM CONFIDENTIAL" for a couple of years after it originally became a 

"Research Report" in 1970. 

A Data Bank is essent.ially a machine to machine com-
munications network in which input terminals are con-
nected to a centrally located computer. the physically 
secured CPU. 

The most outstanding feature of the kind of network 
structure we are talking about is that it must function reli-
ably in a hostile environment. Secrecy in the usual sense, 
that is concealment of the meaning of the messages 
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conveyed, would form the basic element of protection. This 
is required to insure the privacy of those forming the data 
bank community. But machine communications systems, in 
contrast to systems which can enlist the subtle filtering 
capabilities of the human brain are very sensitive to 
interference and deception. Without special protection 
computers are easily fooled and this can become an intoler-
able burden to a data bank operation if this remains upno-
ticed. Both accidental and intentionally designed errors 
must be detected with very large safety margins. A 
machine to machine communications network requires a 
properly secured method which assures the receiver that all 
incoming communications are of legitimate origin and 
uncorrupted. In military systems such methods are called 
authentication. We shall present a method called central-
ized verification. In contrast to military systems, where all 
participants have the same key, our system emphasizing 
individual privacy permits each individual member of the 
data bank to have his own private key .... 

The heart of our Data Bank Network is the so called 
Vault, which is properly secured physical location of the 
central data processing facility consisting of a time sharing 
CPU and appropriate storage or filing facilities. 

Schroeder realized, early on, that many important applications of computer 

systems could involve groups with conflicting interests. His dissertation, 

"Cooperation of Mutually Suspicious Subsystems in a Computer Utility," evolved 

out of work on MULTICS under Saltzer, at MIT, and also appeared as a Project 

MAC technical report in 1972. The following excerpts indicate the motivation 

and scope of his work. 

This thesis describes practical protection mechanisms 
that allow mutually suspicious subsystems to cooperate in a 
single computation and still be protected from one another. 
The mechanisms are based on the division of a computation 
into independent domains of access privilege, each of which 
may encapSUlate a protected system. The central com-
ponent of the mechanisms is a hardware processor that 
automatically enforces the access constraints associated 
with a multidomain computation implemented as a single 
execution point in a segmented virtual memory .... 

In this thesis interest is centered on protection 
mechanisms within computer systems. The viewpoint is that 
of a computer system designer who is intent upon providing 
efficient protection mechanisms applicable to a wide range 
of problems. Questions of privacy influence this effort to the 
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ext.ent. of implying criteria which must be met before such a 
computer system can be applied to those problems where 
privacy is an issue. The thesis. however. contains little 
explicit consideration of privacy. 

To furt.her define the scope of the thesis. consideration 
is limited to problems of hardware and software organiza-
tion. While it is recognized that issues such as installation 
security. communication line security. hardware reliabilit.y. 
and correctness of hardware and software implementations 
of algorithms must be considered in order to achieve the 
secure environment required for useful application of pro-
tection mechanisms. these topics are beyond the scope of 
the thesis .... 

Taken together. the hardware and software mechan-
isms described in this thesis constitute an existence proof 
of the feasibility of building protection mechanisms for a 
computer utility that. allow multiple user-defined protect.ed 
SUbsystems. mutually SUSplCIOUS of one another, to 
cooperat.e in a single computation in an efficient and natural 
way. 

Parker has provided the public with many amusing tales of crimes per-

petrated by individuals against organizations maintaining computer systems. 

While the present work tends to be concerned wit.h protecting individuals or 

groups from organizations maintaining computer systems, the solution 

envisaged by Parker in his 1976 copyright book, Crime by Computer, is quite 

instructive. 

It must become clear to the business community, 
government, and finally the public that the safety of our 
economy and our society is growing increasingly dependent 
on the safe use of secure computers. 

An ideal secure computer system including data com-
munication capability would be ,one of proven design which 
could be run safe from compromise without human inter-
vention. It would be served by computer operators who 
would be allowed only to perform tasks directed by and 
closely monitored by the computer. No maintenance by 
human beings would be allowed in its secure operational 
state. All failures short of being physically damaged from 
an external force would be failsafe, and a failure not 
automatically reparable or overcome would cause the sys-
tem to shut down in an orderly. safe fashion and 10cJc up all 
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data files in a separate. secure storage. 

It might take four trusted executives. including a spe-
cial government inspector. simultaineously to insert and 
turn keys in the system console locks to change the mode of 
operation from "secure" to "open." Then human access to 
modify and repair the system would be allowed. Before 
returning the system to secure state again. a team of audi-
tors would go through an elaborate process of reproving and 
testing the secure state. Once the system is again declared 
secure. another group of four executives would simultane-
ously turn their keys in the console locks to make the sys-
tem again operable in secure state. 
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Chapter III 

Assumptions 

This chapter is intended to make sutIicient assumptions so that the 

proofs of Chapler VII can be completed. In addition. the fundamental 

assumptions which shape the proposed design are presented. 

In the first two sections of this chapter. notation is presented for the cryp-

tographic techniques introduced in the previous chapter, and this notation is 

then used to describe the properties desired of the techniques. Section three 

makes explicit the assumptions about certification used in the proofs of chapter 

VII. (Certification of vaults is covered in Chapter IX.) The last two sections of the 

chapter present the assumptions about physical security and organizational 

structure which shape the design of the proposed systems. 

§ 1 Cryptologic 

Defines exactly what a crypto-system is assumed to make intractable. 

It will be assumed that the possibility of successful "forgery," " sealbreak-

ing," or "de-compression" efforts, using feasible amounts of computation, is so 

small that it can safely be ignored. 
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Notation. Someone becomes a user of a public key cryptosystem by creat-

ing a pair of keys. K and }\1. from a suitable randomly generated seed. The pub-

lic key Kis made known to the other users. or anyone else who cares to know it: 

the private key 1\1 is never divulged. The encryption of X with key K will be 

denoted K(X). and is just the image of Xunder the mapping implemented by the 

cryptographic algorithm using key K The increased utility of these algorithms 

over conventional algorithms results because the two keys are inverses of each 

other. in the sense that K'"1(K(X» = K(K'"1(X» = X . 

. Forgery 

A user signs some material X by prepending a large constant C (all zeros. 

e.g.) and then encrypting with its private key. denoted }\l(C,X) = Y. Anyone can 

verify that Y has been signed by the the holder of }\1, and determine the signed 

matter X. by forming K(Y) = C.x. and checking for C. 

A digital signature is forged by someone who creates it without the 

appropriate private key }\1. A potential forger is assumed to have the public 

key K and the ability to have some items of the forger's choice signed. A forgery 

attempt is considered successful if it yields some item Y that has not been 

signed using the private key but for which K( Y) = CX. regardless of what X is. 

One forgery strategy is to choose values for Y at random, until one is found 

whose decryption with Kyields something with a prefix of C. 

An alternative attack that is of general utility requires only a public key. 

The corresponding private key can be found by using candidate private keys to 

decrypt an item encrypted with the public key. until one such decryption yields 

the original item. 
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Sealbreaking 

The sealing of X with K. is denoted K(R,X), where R is a random string. 

A potential sealbreaker is assumed to have the public key K. a set of items 

of uniform size and another set containing the items of the first set in sealed 

form. A successful sealbreaker knows something about the correspondence 

between the elements of the two sets. One sealbreaking strategy is to guess the 

random information R that was used to seal one particular item from the 

unsealed set. Prepending the guess to the item and encrypting with the public 

key would yield an item from the set of sealed items only if the guess were 

correct. This would reveal a single correspondence. 

De-{;om pression 

A compression function F maps a large string of domain bits D into a 

roughly key-sized string of bits R. The adversary is assumed to have the func-

tion F, an element of the domain D of interest, and of course R = F(D). The 

adversary is successful if a second element of the domain, D', can be produced 

such that D' ¢ D and R = F(D'). 

§2 Partial Key Techniques 

Defines what is expected of' a partial key technique, and also makes 

Significant assumptions about their use. 

It is assumed that the possibility of someone not privy to the seed or 

sufficient partial keys being able to determine anything about the original key 

which was divided is so small it can safely be ignored. Also, knowledge of even 

chosen partial keys never gives any clue about the seed used. 
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The entities holding partial keys in this thesis will be assumed "equally 

capable". In other words, they will be a homogeneous set, any subset of cardi-

nality greater than the threshold value established for the partial keys will be 

sufficient to reconstruct the original key. A similar homogeneity assumption will 

be made about other kinds of voting as well. These assumptions strongly :flavor 

the approach presented in the following chapters. The possibility of other 

approaches is mentioned in Chapter X. 

§3 Verification & Certification 

Defines the requirements of verification and initial certification. 

Assume that mutually suspicious groups can know that the plan for a vault 

has the desired properties and that the vault operates correctly according to 

the plan, as a result of some verification and certification procedures. 

Verification was discussed in the previous chapter; some new approaches to per-

forming certification are the topic of Chapter IX. 

§4 Physical Security & Survivability 

Potential attacks on a vault are described and compared. 

This section presents a list of possible attacks on a vault. The results of 

these attacks vary from tolal covert control of a vault by an attacker, to simple 

destruction of a vault. The following is a summary of the potential threats 

against a vault, roughly in decreasing order of difficulty: 

(1) Surreptitious corruption-vault has been modified, and secrel keys within 

vault may be known; the attack is not delectable by inspection; both 

tamper-indicating and tamper-responding mechanisms have been defeated. 

(2) Detectable corruption-same as (1) but inspection will reveal at least 

attempted tampering; tamper-indicating mechanism has not been defeated. 
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(3) Compromise -secret information within the vault has become known to 

attacker, but the attack leaves no trace; attack may consist of probing, lim-

ited compromise of the tamper-sating mechanism, exploitation of 

weaknesses in the TEMPEST techniques employed, or possibly cryptanalysis. 

(4) Covert isolation -node kept from communicating with anyone except 

attackers; node presumed dead to observers; may be a difficult attack 

where broadcast style communication channels are used. 

(5) Overt isolation-communication with outside blocked; attack obvious to 

observers; e.g. jamming in a system with broadcast style communication. 

(6) Destruction-vault is disabled. 

§5 Organizational Structure 

Defines the three tier organizational structure assumed for the most 

elaborate application of the proposed systems. 

Chapter I mentioned the existence of one group in a computer application 

that is particularly concerned with reliability and survivability of the system. 

The systems design proposed in subsequent chapters further divides this group 

into three different bodies, called trustees. The analogs of these bodies in a cor-

poration might be its officers, directors, and stockholders. The following table 

the functions and exposure to the three levels of trustees: 

(1) trustee level 1-charged with day-to-day operations of the system, which 

include implementing a policy which balances survivability and perfor-

mance, within the policy constraints formulated by the trustees at level 2; 

has no significant advantage in attacking security over anyone. 

(2) Trustee level 2-charged with policy formation aspects of trusteeship, in 

which the trustees at level 2 must define how difficult it will be for them and 

also how difficult it will be for others to defeat the system. to decide which 
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new vaults will be used; will be able to compromise some security proper-

ties without any attack, but only after giving advance notice. 

(3) Trustee level 3-charged with the ability to restore the whole system in the 

event of disaster; can perpetrate certain threats without any attack. 
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Chapter IV 

Single Vault Systems 

A simple single vault system is presented to introduce and illustrate 

some of the basic ideas of the proposed systems. and also to motivate 

and define the problems to be overcome by multiple vault systems. 

When a certified vault is first constructed by the techniques presented in 

Chapter IX, a suitable public key and its inverse private key are chosen by a 

mechanism within the vault's protected interior. using a physically random pro-

cess as discussed in Chapter II. The public key is then displayed outside the 

vault, on a special device certified for this purpose. As far as the world outside 

the vault is concerned, the possessor of the vault's private key is the vault: it 

can read sealed confidential messages sent to the vault, and it can make the 

vault's signature. 

§1 Checkpoints & Restarts 

Introduces the notions of encrypted checkpoints and the restarts 

they can allow trustees to perform. 

32 



What if Something Goes Wrong? 

If a vault were totally destroyed, computation would be safely halted-no 

secret information would be revealed, and the vault would not have taken any 

improper action. Other conditions might require an equally safe halt to compu-

tation. If a tamper-responding system detects an attempt to penetrate the 

vault's protective enclosure, or a fail-safe mechanism determines that the 

vault's contents can no longer be counted on to operate correctly, then the 

information stored in the vault, including the vault's private key, must be 

erased. 

This information will be encrypted in a special way, and saved outside the 

vault, so that a safe recovery can be provided. The encryption of the vault's con-

tents, which includes its private key, is called a checkpoint, and is detailed 

below. At suitable intervals, checkpoints are formed, and then stored outside 

the vault. In some cases, there may be time to issue un-scheduled checkpoints 

before an emergency requires the vault's contents to be erased. 

The primary consideration behind the design of an encryption method for 

checkpoints is that there exists a means to decrypt them, but only at the 

appropriate time and place. The decision that some newly sealed vault can, and 

should, be given the ability to decrypt a checkpoint is necessarily a human one. 

Assume, for now, that the decision is to be made by unanimous consent of a set 

of human trustees. Before a checkpoint is released by a vault, it is encrypted 

with a special key for this purpose. Conventional as opposed to public key cryp-

tography can be used for this. This key used to encrypt checkpoints will be 

divided into partial keys, one key for each trustee. 

Public key cryptography will be used to distribute these partial keys to the 

trustees in a secure manner. As part of the certification process, the vault is 

supplied with a public key issued by each trustee. Thus, the vault can ensure 

the confidentiality of the partial key it sends each trustee by sealing that partial 
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key using the trustee's public key. Each trustee now has two keys to keep 

secret: a key used to unseal messages received. and a partial key that 

will be used in connection with decrypting checkpoints. 

Restarts 

A resta.rt is the process by which a freshly sealed vault resumes the compu-

tation whose state has been saved in a checkpoint. After a replacement vault is 

certified and sealed, it forms a temporary public key and its inverse private key 

from a random seed. and then displays the temporary public key. as the per-

manent public key was displayed in the origj.nal start-up. Then the restarting 

vault receives partial keys from the trustees. A trustee provides the secrecy of 

its partial key while it is in transit to the vault by sealing it with the displayed 

temporary public key. 

Having received and decrypted the partial keys, the computation within the 

replacement vault merges them to form the key originally used to encrypt 

checkpoints, and uses this to decrypt the checkpoint received. The replace-

ment vault then bootstraps itself inlo the state saved in the checkpoint. Thus, 

the original public key found in the checkpoint is reinstated, and the computa-

tion within the replacing vault becomes an exact copy of the original computa-

tion. The restarted vault can then be safely brought back up to date by re,. 

playing all the messages sent it since the checkpoint was made. 

§2 Limitations of Single Vault Systems 

Several kinds of abuse of single vault systems by the trustees are 

described and solutions using multiple vault systems are sketched 

It is generally held that networks of computers may be better than a single 

centralized computer system in many applications, for such reasons as 
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improved performance, increased reliability, and decreased communication 

costs. The multiple vault systems to be presented in the following chapters may 

be preferred over single vault systems for similar reasons. In addition to the 

usual advantages, however, multiple vault systems offer solutions to many of the 

problems of single vault systems: 

Destruction oj InJormation. In a single vault system. the partial keys 

held by the trustees will always be sufficient to decrypt any previous checkpoint. 

Thus, a conspiracy of a sufficient subset of the trustees will have access to all 

information, no matter how old the information is. In a multiple vault network, 

however, the trustees will be forced to request certain partial keys from the net-

work during a restart in order to obtain sufficient partial keys to decrypt a 

checkpoint. The network will change the keys used to form checkpoints, and the 

partial keys it maintains, in such a way that obsolete checkpoints can never be 

decrypted. (A conspiracy of trustees in a single vault system need never be able 

to forge a vault's signature, since a private key used by a vault only for making 

signatures need never be saved outside the vault.) 

Record oj Restarts. In a single vault system, a conspir-

ing subset of the trustees can secretly combine their partial keys and obtain 

keys sufficient to allow them to decrypt checkpoints. In the multiple vault sys-

tem, the trustees will have to request partial keys from the network to accom-

plish a restart, as mentioned above, and the network will be able to maintain a 

record guaranteed to include descriptions of all such requested restarts. Such a 

record is very useful because it can ensure that only certified vaults have 

decrypted checkpoints, and that they have done so only during certified res-

tarts. 

Advance Notice oj Security-Relevant Changes. In a single vault system, 

the trustees can perform a restart using a vault which is certified but which con-

tains an arbitrary change in the security-relevant aspects of the vault's 

35 



operation. For example, the new vault may give greater power of inspection or 

modification to the trustees. In multiple vault systems, the trustees can be 

required to give advance notice of security-relevant changes. such as the public 

keys of vaults to be added into the network and changes in parameters used by 

the network to protect itself from the trustees. 
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Chapter V 

Multiple Vault Systems 

Algorithms to be performed by a collection of vaults are defined 

using an extended specification language. 

§1 Introduction to Algorithms 

An overview of the algorithms proposed is presented which includes 

the relationship of this chapter to other chapters. 

This chapter describes a collection of algorithms to be performed by a 

number of separate vaults, or nodes. Each node will perform essentially the 

same algorithms, but some of its own state may vary. The algorithms are organ-

ized as a set of a dozen and a half independently callable routines. A node will 

perform anyone of these routines on request, if it is provided with the appropri-

ate actual parameters. Typically, some of the actual parameters of a call will 

bear digital signatures formed by other nodes in the system and also by various 

trustees. If these signatures and the rest of the parameters prove acceptable to 

the called routine within a node, then the node may alter its state and/or pro-

duce some signed and possibly sealed output as a result of performing the called 

routine. Calls are bandIed one at a time by a node, so that once a node com-
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pletes processing of one call. it begins waiting for the next call to be requested. 

The nature of the algorithms and their use of cryptographic techniques 

ensure that: (1) the various security properties provided by the system can not 

be violated by any sequence of calls. and (2) the trustees can maintain the reli-

able operation of the network by performing suitable sequences of calls. 

Chapter VII argues these points; the present chapter uses a specification 

language to describe a practical version of the algorithms. 

Among other things. the algorithms must provide a kind of synchronization 

and agreement among nodes about allowing new nodes into the network. remov-

ing nodes from the network. and the status of nodes once in the network. The 

routines will be called (for Operation function) since they are an 

extension of the of the Parnas specification language [Parnas 72]. as 

mentioned in Chapter II. Figure 1 shows seven of the major These 

can change the membership of the network and the status of nodes 

within the network. For example. the CERTIFY can bring a new node 

into the network. leaving the new node in the "initiate" state. Similarly. 

REMOVE_NODES can take a node in the "participated". "veteran" or initiate 

states out of the network. These and the other will be described in 

detail in sections 6 and 7. 

Section 2 introduces the basic types. primitives and constants of the 

specification language. Section 3 and 4 define the state of nodes as a collection 

of Y-functions (for Value function). which have been extended to include types 

not in the original Parnas notation. Section 5 defines the rather powerful 

parameter passing mechanism used both for input and output by the 

functions. which is an extension of the Parnas notation. Finally. as mentioned 

above. sections 6 and 7 present specifications of the themselves. 
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Strictly speaking, a specification language is intended to define what a pro-

gram is to do-and not how it is to do it. Nevertheless, it will be very convenient 

to apply the familiar terminology of programming languages to the specification 

language used here. The presentation of the specification language will also use 

a variety of type fonts and type sizes, roughly based on those used by Parnas 

[72]. Some symbols will appear in upper case, others in lower case, and a few 

others will combine the two. A summary of the typographic conventions is 

presented in Table 1. 

primitives lit constants 
synta.z-m.e ta.-sym.bols 
pseudo-type9 
types 
type-constructors, if then else & with 
PARAMETElLNAMES IX TEMPORARY_VARIABLES 
V-FUNCTION_NAMES lit crFUNCTION_NAMES 
AGGREGATE-FUNCTION_NAMES 

Table 1. Typographic Conventions 

§2 Simple Types. Primitives & Constants 

The basic data types of the specification language and the elemen-

tary operations which can be performed on thcm are presented. 

The specification language is strongly typed, although some primitive func-

tions can have arguments of any type. Some primitive functions have no argu-

ments, but those entities with fixed values are called constants. 
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Simple Types 

Some of the simple types are those usually found in programming 

languages. Others are the keys, seeds, and parts of keys used by the crypto-

graphic transformations. Yet others are simply enumerated types, a La Pascal. 

used as tags included in signed messages to indicate the kind of message. A 

special type is used to represent node names. Chapter VIII contains some dis-

cussion of straightforward representation schemes for instances of the simple 

types, and the constructed types of the next subsection, for purposes of 

analysis, but further consideration of implementation techniques is beyond the 

scope of this work. 

A simple context free grammar will be used to illustrate the basic syntax of 

the specification language. The first production of the grammar is shown here: 

elementary-type -+ boolean I integer I time I node-:id I 
seed I public-key I private-key I partial-key I 
proposal-kind I announcement-kind I action-kind I transfer-kind 

The following is a detailed definition of each of the elementary types: 

boolean, integer The usual. 
time The content of a clock or counter. Uniform units are used so 

that the difference of two times produces an integer which is 
proportional to the amount of time between the two times. 

node-:id 

seed 

public-key 

A special type whose values are used to uniquely identify nodes 
and trustees, and whose values are never re-assigned. 
A randomly selected value preferably from a space at least as 
large as the space of possible keys, which is returned by the 
primitive function create-seed and is used by the primitive 
functions and to 
create keys and partial-keys. 
A public key that was created by a call to create-public. Gen-
eraly publicly available, and can be a parameter in calls to seal 
and check-signature. 
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private-key A private key that was created by a call to create-private. Gen-
erally kept secret by its creator, except may be transferred 
during a RESTART. Used in calls to sign and unseal. 

partial-key A partial value of a private-key that is created by a call to 
lorm,partial. Sufficient quantities of these keys can be used by 
merge-partials to reconstruct the private key from which they 
were formed. 

proposal-kind This is an enumerated type, a la Pascal, whose values are 
denoted by the constants: propose-certily propose-set-minima 
and propose-Temove. They are used as inclusions in signed pro-
posals of the corresponding names. 

announcement-kind 
An enumerated type. whose values are used as inclusions in 
announcements of proposed actions of the corresponding 
names. The unique values are denoted by the constants: cer-
tilY, set-minima. and remove. 

action-kind Used as an inclusion in signed announcements of trustee level 1 
actions. The unique values are denoted by the constants: pro-
pose. canc el, apply. change-presents. restart, participate. 
create-keys. and change-keys. 

transfer-kind Used as an inclusion in signed output generated by an 0-
function and inlended to be consumed by one or two different 
o-functions. The unique values are denoted by the constants: 
REST ART_to_ASS UME_APPLICAT ION. 
PAR TIC IPATE_to_RECEIVE_NEW_PARTICIPANT. 
PARTICIPATE_to_NEW_PARTICIPANLRECEIVE. 
CREATE_KEYS_to_ISSUE_NEW_PARTIALS&CHANGE_KEYS, 
CREATE_KEYS_to_NEW_PARTICIPANLRECEIVE. 
ISSUE_NEW_PARTIALS_to_RECElVE_NEW_PARTIALS. 
RESTARLto_ASSUME_APPLICATION. 
partials-Teceived, proposal, and checkpoint. 

Constructed Types 

The elementary types of the previous subsection may be combined into sets 

or tables. This is an extension of the original notation proposed by Parnas and 

further developed for HDM [Levi. Robinson and Silverberg 79]. but resembles the 

sets and maps of the SETL programming language [Dewar. Schonberg and 

Schwartz 81]' A set of some elementary type is just an unordered collection of 

elements of the type. The usual set operators will be found in the next section. 

A table is much like a one or two dimensional array. but it may be sparse and 

have non-integer subscript types. The following gives a syntax for these 
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constructed types: 

simple-type -+ elementary-type I 
set of elementary-type I 
table[element ary-type] of sim.ple-type I 
table[eZementary-type ][elementary-type] of simplB-type I 

Examples of these constructed types will be found in each subsequent. section of 

this chapter. 

Simple Primitives 

These primitive functions take zero or more parameters. and return a value 

of a simple type. Some are generic in that some parameters need not be of any 

particular simple type. Such paramet.ers will be shown as type any-type. Many of 

the primitives are familiar. like t.hose needed to determine the current time and 

perform the usual arithmetic. set.. and boolean operations. 

A few of t.he primitives perform the cryptographic functions which were 

int.roduced in Chapter II and formalized in Chapter III. Functions are defined 

which create seeds. creat.e keys and partial keys from seeds. and merge partial 

keys. The following identity provides an example of the use of t.he partial key 

primitives. It simply asserts that partial-keys formed from a key using a com-

mon seed can be merged back into the original key. 

if s = create-seedO then 
TfL'!!!!;TfLerge-partials{forrrvpartial(1, s, TfL, 2)'/ormpartial(2, s, TfL, 2» 

The following provides detailed definitions of the primitive functions. 

43 



cre ate -se e d () -+ seed 
Returns a seed derived from a physically random process 
within the instant node, and has no parameters. 

create-public (s:seed)-+public-key 
Returns a public key that is a function of the parameter, seed s. 

create -private (s:seed) -+private-key 
Returns a private key that is a function of the seed s. The 
private key corresponds to the public key created by a call to 
create-public with the same parameter s. 

/orrn.-partial (n:any-type, s: seed a: any-type, m:integer) -+ partial-key 
Returns a partial value of the parameter a, with a threshold 
value of m (see merge-partials). using seed s. Calls with 
different values or types for n produce distinct partial values. 
m different partial values created with identical s are necessary 
and sufficient to determine the original value a. The seed scan 
not be determined even if all results of all possible calls are 
available, and without the seed the values of any call give no 
clue about the values of a used in another call. 

merge-partials (p:set of partial-key)-+ l1:any-type 
Returns the original value of 11 which was divided into parts by 
formrpartial. The parameter p must include at least as many 
partials formed from the original a as the threshold with which 
they were formed. 

compress(a:any-type)-+i:integer 

now 0-+ time 

Returns a cryptographic compression of the argument into an 
integer. Thus, given a and i = compress(a) and the function 
compress, it is infeasible, under the assumptions of Chapter III. 
for an adversary to produce a' such that i = compress(a') and 
a' 'F a. 

Returns the time maintained by the clock of the instant node. 

suicide (m: integer) 
A real-time counter is set to count down for an interval of m, 
and if the counter ever reaches D. the instant vault sets all its 
secret V-functions to the value erased and in effect kills itself. 

cardinality (s:set of any-type)-+integer 
Returns the number of distinct members of the set s. 

+. -, x-+integer These are the usual infix operations performed on integers. 
Also - applied to two times is an integer which is negative when 
the time on the right is before the time on the left. (See 
definition of time.) 
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-, U, n .... set of lIDy-type 
The usual infix operators defined on sets, returning sets. 

< , .... boolean. 
Comparison infix operators. 

e:, t , c .... boolean. 
Set membership, its negation, and subset. 

Simple Constants 

Besides the standard use of Arabic numerals as literal constants, there are 

two major sorts of constants used in the specification language. One kind of con-

stant is used to indicate the various vacuous values, such as the empty set, un-

initialized or don't-care values, and a special value indicating that all informa-

tion about any previous value of the function is lost. The second sort of constant 

is used to reference information certified into the vault initially which specifies 

the keys, number and quorum sizes of the two groups of trustees and the 

enforced delay intervals on their actions. The certification of constant values 

into vaults is covered in Chapter IX. 

Of course more elaborate versions of the algorithms presented here might 

include mechanisms to allow some or all of the constant values related to the 

trustees to be changed during operation of the network-much as the 

SET_MINIMA D-function does in the present algorithms. But such flexibility 

may actually prove undesirable, since those supplying information to a system 

may not wish to do so if the ground rules for its security can be revised in an 

arbitrary way. 

A detailed definition of the simple constants follows: 



empty 
undefined 
erased 

The empty set. 
No particular value. 
No trace or clue is left about the previous value of any Y-
function with this value. 

coo ling -oJ!4,nteru al 
The minimum interval of time required between the time the 
last member of a majority of present nodes signs a proposal 
and the time the first node signs the announcement of the 
action defined by that proposal. 

The set of public keys held by the trustees at level 1 which are 
used to check all signatures purported to be made by trustees 
at level 1. 

truste e -2-publics 
The set of public keys held by the trustees at level 2. 

fruste e -l-quorum 
The number of trustees at level 1 whose signatures are 
sufficient to authorize anything that can be authorized by 
trustees at level 1. 

fruste e -2-quorum 

trustee-l-ids 

truste e -2-ids 

The number of signatures of trustees at level 2 required to 
authorize any proposed action. Also the number of trustees at 
level 2 whose trustee partials are required by the replacing 
node in a restart. 
The set of node-ids which includes one member for each trustee 
at level 1. (As mentioned elsewhere, trustees are not nodes, 
but this convention greatly reduces the proliferation of types 
and typing mechanisms.) 
The set of node-ids which includes one element for each trustee 
at level 2. 

§3 Secret V-functions 

The V-functions which record information not publicly available are 

defined, their use discussed, and initial values given. 

Variable functions, or V-functions, are the variables which hold a vault's 

state. The Y-functions of a vault can be divided into those which the vault must 

keep secret and those which are public knowledge. This section presents the 

secret Y-functions; the next section presents the non-secret V-functions. 

The Y-function definitions presented here usually include three parts: (1) a 

heading which defines the name and type of the V-function; (2) an initial value 
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part that includes the name and an expression whose value is the initial value: 

and (2) a comment part which discusses the intended use of the V-function. 

The following productions give the basic idea of the syntax, further details 

being supplied in later sections: 

v-/unction name :simple-type :V-function initialJUalue comment 
initialJUalue Initial: name = expression I derivation 
comment Comment: wildcard 

Vaults must at minimum maintain the secrecy of their private keys upon 

which the security of the entire system relies. There will be two different kinds 

of secret keys, as mentioned in the previous chapter. Some keys need never be 

known outside the vault-these are the node secret keys. Other keys are kept 

secret by the vault, but they have been divided into partial keys and provided to 

other vaults for use during a restart-these are the application secret keys. In 

the following two SUbsections, each kind of secret V-functions is considered 

separately. 

N ode Secret Y-functions 

The V-functions described in this subsection never leave the vault. When 

the vault destroys its own information content, the values of these V-functions 

are set to erased.. 

This sub-section makes the first formal reference to the notion of sub-

partial keys. These are just partials of partial keys. In other words, some thres-

hold of sub-partial keys are sufficient to reconstruct the original partial key 

from which the sub-partials were originally formed. The algorithms in this 

chapter allow the trustees to decide how many, if any, sub-partial keys will be 
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used by the network. The reason for this is that while the use of sub-partials 

does provide somewhat more convenience and flexibility in the operation of the 

network, they also have non-trivial cost in terms of system resources (see 

Chapter VIII for analysis of resource requirements). Sub-partial keys allow a 

"quorum" of nodes to, among other things, cause any node not participating in 

the last key change to become "participated" and enter a state equivalent to 

that which would have been achieved had it participated in the key change. res-

tart nodes in an arbitrary order. and diminish the quorum size. The essence of 

this mechanism is that sufJicient sub-partial keys allow every quorum of 

"present" nodes to form a partial key for other nodes in the network. 

The following are definitions of the node secret V-functions: 

NODE_PRIVATE:private-key: V-function 
Initial value: NODE_PRIVATE = 

crea.te-priva.te (let INITIAL_NODE-EEED = create-seedO) 
Comment: The private application key of the instant node. The initial value 

uses a V-function which is local to the initialization process 
INITIAL_NODE_SEED. 

NEW _NODE_PRIVATE:private-key: V-function 
Initial value: NEW_NODE_PRIVATE = undefined 
Comment: Returns the application private key which will be assumed by the 

instant node if it is a participant in a CHANGE_KEYS or subject of a PAR-
TICIPATE before the next key change, This private key is created by 
CREATE_KEYS and corresponds with NEW_NODE_PUBLIC, 

PARTIAL_SEED:seed:. V-function 
Initial value: PARTIAL.SEED = undefined 
Comment: Returns the randomly create'd seed used to form partial keys. 

Created and changed by CREATE_KEYS, PARTIAL.SEED is used by 
ISSUE_NEW_PARTIALS and also by the subject node of PARTICIPATE. 
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PARTIAL_KEYS:table[node-id] of partial-key. V-funclion 
Initial value: ""'p PARTIALKEYS[p] = undefined 
Comment: The partial key held by the instant node for the participated node 

p is PARTIAL_KEYS[P]. The constituent partial keys are received by 
RECEIVE_NEW_PARTIALS and by RECEIVE_NEW_PARTICIPANT. 

NEW_PARTIALKEYS:table[node-id] of partial-key. V-function 
Initial value: ""'n NEW_PARTIAL_KEYS[n] = undefined 
Comment: Returns the new partial key held by the instant node for the 

selected node. The value is obtained by RECEIVE_NEW_PARTIALS and 
will replace PARTIAL-KEYS iff the instant node participates in a 
CHANGE_KEYS before the next CREATE_KEYS. 

SUB -PAR TIALS:table[node-id] [integer] of partial-key. V-function 
Initial value: ""'p ViSUB-PARTIALS[P][i] = undefined 
Comment: The partial partial key held br the instant node for the partici-

pated node n, to be released to the node assuming the ith set of sub-
partials. The values are obtained from NEW_SUB-PARTIALS after the 
instant node participates in a CHANGE_KEYS, or from the input supplied 
to NEW_PARTICIPANT_RECEIVE. The SUB-PARTIALS[P][i]s held by a 
quorum of present nodes for a particular set of sub-partials indexed by i 
are sufficient to allow merge-partials to determine a partial for node p. 

NEW_SUB-PARTJALS:table[nodc-id][integer] of partial-key. V-function 
Initial value: 'Vn V'iNEW_SUB-PARTJALS[n][i] = undefined 
Comment: Returns values accumulated since the last CREATE_KEYS which 

will replace SUB-PARTIALS iff the instant node participates in a 
CHANGE_KEYS before another CREATE_KEYS. 

OWN_TRUSTEE_PARTIALS:table[node-id] of partial-key: V-function 
Initial value: Vn OWN_TRUSTEE_PARTJALS[n] = undefined 
Comment: OWN_TRUSTEE_PARTIALS[n] is a private key which must be 

present in the instant node when the instant node is the replacing node in 
a RESTART in which node n is the replaced node. Values of 
OWN_TRUSTEE_PARTIALS are obtained by the subject of CERTIFY for all 
the nodes it is certified for for (except itself), and any values for which 
the subject is not certified are erased. In an application where some 
different nodes have access to different data, a particular vault may not 
be approved to restart some nodes. 
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Application Secret V-functions 

Care is taken to ensure that APPLICATION_PRIVATE can be recovered only 

with partial keys of the most-recently completed key change. and that 

NEW_APPLICATION_PRIVATE can be recovered with partial keys distributed for 

the next key change. Of course there is presumably much secret application 

data which must be included in checkpoints. and it should also be divided into 

current change period and new period-so that obsolete application data 

becomes inaccessible once a node changes keys. The aggregate Y-function. 

APPLICATION_SECRET_ V-FUNCTIONS. is assumed to contain all application 

secret data from the current change period;' the aggregate 

NEW_APPLICATION_SECRET_ V-FUNCTIONS contains all application data 

for the forthcoming key period. 

The following are definitions of the two application Y-functions relevant 

here. one for each aggregate: 

APPLICATION_PRIVATE:privale-key: Y-function 
Initial value: APPLICATION_PRIVATE = creafe-privafe(creafe-seedO) 
Comment: The private application key of the instant node. 

NEW_APPLICATION_PRIVATE:privale-key: Y-function 
Initial value: NEW_APPLICATION_PRIVATE = undefined 
Comment: Returns the application private key which will be assumed by the 

instant node if it is a participant in a RESTART or subject of a PARTICI-
PATE before the next CHANGE_KEYS. This private key is created by 
CREATE_KEYS and corresponds with NEW_NODE_PUBLIC. 
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§4 Non-Secret V-functions 

Those are presented which relate to node state that is 

not secret. 

Some V-functions in this section are defined in terms of expressions involv-

ing other Y-functions, and they have a "derivation" part instead of an initial 

value part: 

derivation -. Derivation: nam.e = expression 

The OWN_NODE Y-function is special in that its value never changes during 

the life of a node, but the actual initial value of each node's OWN_NODE must be 

unique. No initial value part or derivation is used for OWN_NODE. 

As will be seen in Chapter VII, it is quite useful to distinguish those Y-

functions whose values must be in agreement across nodes, from those Y-

functions which are not subject. to any consensus constraint. These two kinds of 

V-functions are covered in separate subsections. 

Consensus Y-functions 

The non-secret Y-functions presented in this subsection are intended to 

have identical value for all nodes with the same value of CYCLE (which is defined 

in the next subsection). They define the status of the network. As a notational 

convenience, the consensus Y-funclioris are denoted collectively as 

CONSENSUS_ V-FUNCTIONS. 
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NODES_IN_ USE:set of node-icl: Y-function 
Initial value: NODES_IN_ USE = empty 
Comment: Returns the set of node ids which includes an id for every node in 

the network. These exclude all removed nodes and include the newly 
CERTIFYed initiate nodes which have not ever been members of PARTICI-
PATED, and all veteran nodes which are those nodes who have been 
members of PARTICIPATED at least once, whether or not they are 
presently participated. 

USED_NODE_IDS:set of Y-function 
Initial value: USED_NODE_IDS = trustee-l-ids u trustee-24.d.s 
Comment: Returns a set of node ids which are not suitable for use by any new 

node. CERTIFY ensures that new nodes do not use ids in 
USED_NODE_IDS, REMOVE_NODES places the id of all removed nodes 
into USED_NODE_IDS, and RESTART places the id of the replaced node 
in USED_NODE_IDS. For simplicity in typing and signature checking 
primitives, as already mentioned, are also used to identify the 
trustees. 

PARTICIPATED:set of node-id: Y-function 
Initial value: PARTICIPATED = empty 
Comment: Returns the set of node ids which includes exactly those nodes 

which were included as PARTICIPANTS in the last CHANGE_KEYS and all 
those nodes which have been the subject of subsequent PARTICIPATEs. 
Any node which is to become present must be a member of PARTICI-
PATED. 

PRESENT:set of node-id: Y-function 
Initial value: PRESENT = empty 
Comment: Returns the set of node ids which defines the most privileged and 

capable subset of nodes. Every QUORUM of members of PRESENT have 
sufficient partial keys to enable them to restart any present node. Signa-
tures of a QUORUM of members of PRESENT are required before any 
node may perform any synchronized D-function. 

ABSENT:set of node-id: Y-function 
Derivation: ABSENT = NODES_IN_USE - PRESENT 

APPLIED:set of node-id: Y-function 
Initial value: APPLIED = empty 
Comment: Returns the set of node ids of all nodes which currently have an 

application. Nodes enter applied when they are the subject of an APPLY 
or when they are the replacing node in a RESTART and they leave 
APPLIED when they are a subject of REMOVE_NODES or the replaced 
node of a RESTART. 
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MAJORITY:integer: Y-function 
Initial value: MAJORITY = 0 
Comment: The minimum number of signatories required before any 

announcement or action can be carried out. Set by CHANGE_PRESENT. 
Must be at least as great as QUORUM and no greater than 
cardinality(PARTICIPATED). and satisfy the MINIMUM_MARGIN require-
ment. 

MARGIN:integer: Y-function 
Derivation: MARGIN = (2x MAJORITY) - cClrdinality(PRESENT) 
Comment: The minimum intersection between any two MAJORITYs of 

PRESENT nodes. 

MINIMUM_MARGIN:integer: V-function 
Initial value: MINIMUM_MARGIN = 1 
Comment: The smallest allowable value of MARGIN. The value of 

MINIMUM_MARGIN is changed only by SET_MINIMA. and can not be set 
below 1. which ensures that MAJORITY is always a simple majority of 
cardinality (PRESENT). 

MINIMUM_QUORUM:integer: Y-function 
Initial value: MINIMUM_QUORUM = 0 
Comment: The smallest allowable value of QUORUM. Set by SET_MINIMA. 

QUOR UM: integer: Y-function 
Derivation: QUORUM = QUORUMS[LAST_CHANGE] 
Comment: The current quorum. 

QUORUMS:table[integer] of integer: Y-function 
Initial value: QUORUMS[O] = 0/\ 

'Vn( if n #:- 1 then QUORUMS[n] = 
Comment: Returns the number of partial keys required for a restart of a 

node who last participated during key change n. for all 
LAST_CHANGE. Thus. QUORUMS[LAST-CHANGE] returns the 

number of partials of the current key change period which are required 
by merge-partials. And QUORUMS[LAST_CHANGE + 1]. returns the 
number of nodes whose partials or sub-partials will be required for a suc-
cessful merge-partials during the next key change period. if no further 
CREATE_KEYS occurs before the next CHANGE_KEYS. 
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SUB-PARTIALS_REMAINING:table[node-id] of integer: l'-function 
Initial value: 'V'n SUB-PARTIALS_REMAlNING[n] = undefined 
Comment: Returns the number of sub-partials remaining for the nth node. 

New entries are established by CERTIFY. 

NEW_SUB-PARTIALS_REMAINING:table[node-id] of integer: Y-function 
Initial value: 'V'n NEW_SUB-PARTIALS_REMAINING[n] = undefined 
Comment: Returns the number of sub-partials that are needed by the nth 

node during the current key change period as established in the last 
CREATE_KEYS. 

LAST_CHANGES:table[node-id] of integer: Y-function 
Initial value: 'V'nLAST_CHANGES[n] = undefined 
Comment: LAST_CHANGES[n] returns the last key change period during 

which node n participated in the initial CHANGE_KEYS or in which n was 
the subject of a PARTICIPATE. New entries are established by CERTIFY. 

LAST_CHANGE:integer: Y-function 
Derivation: LAST_CHANGE = LASLCHANGES[i] 

J 
Comment: Returns the number of the last key change the instant node has 

processed, whether or not the instant node participated. 

KEY_CREATION_# :integer: Y-function 
Initial value: KEY_CREATION_# = 0 
Comment: Returns the serial number of action calls of the CREATE_KEYS 0-

function. Notice that there may be more than one call to CREATE_KEYS 
between calls to CHANGE_KEYS and that all but the last such call have no 
effect on the CHANGE_KEYS because PARTIALS_RECEIVED is emptied by 
CREATE_KEYS and all relevant transfers include the KEY-CREATION_#. 
(The multiple calls may be convenient since they allow a new quorum and 
complement of sub-partials to be selected.) 

S UICIDE_INT ERVAL :inlegcr: V-function 
Initial value: SUICIDE_INTERVAL = cooling-off-interual 
Comment: Returns a time interval (i.e. an integer) during which a node must 

become participated or it will commit suicide. The actual call to suicide 
is made on the SUICIDE_INTERVAL minus the amount of time since the 
earliest timestamp among the majority of signatories to the 
CHANGE_KEYS or PARTICIPATE in which the instant node is a subject. 
The initial value is such that a SET_MINIMA must occur before a 
cooling-off-interual has elapsed since the first CHANGE_KEYS partici-
pated in. 
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NODE_PUBLICS :table[node-id] of public-key: Y-function 
Initial value: "-fn NODE_PUBLICS[n] = undefined 
Comment: The current application public key of every node in use. 

APPLICATION_PUBLICS:table[node-id] of public-key: V-function 
Initial value: 'o'nAPPLICATION_PUBLICS[n] = undefined 
Comment: The current node public key of every node in use. New entries are 

established by CERTIFY, and existing entries are changed for subjects of 
CHANGE_KEYS and PARTICIPATE. 

CERTIFICATION:table[node-id] of set of node-id: Y-function 
Initial value: "-fn CERTIFICATION[n] = undefined/\ 

CERTIFICATION[OWN_NODE] = empty 
Comment: Each node in use n has associated with it a set of other nodes 

CERTIFICATION[n] whose applications it is allowed to assume, either by 
APPLY or RESTART. The nodes comprising the certification of a node are 
initialized and changed by CERTIFY. 

PROPOSALS_PENDING:set of integer: Y-function 
Initial value: PROPOSALS_PENDING = empty 
Comment: Returns the set of all cycle numbers of proposals which have been 

proposed but not canceled or carried out. 

COMPRESSED_HISTORY:integer: Y-function 
Initial value: COMPRESSED_HISTORY = 0 
Comment: Returns a compression of CONSENSUS_ V-FUNCTIONS formed 

before the action of the last cycle was completed. Since 
COMPRESSED_HISTORY is included in CONSENSUS_ V-FUNCTIONS. 
COMPRESSED_HISTORY is a Y-function of the entire series of states 
obtained by the identical Y-functions during all previous cycles. Because 
COMPRESSED_HISTORY is checked in the input of every synchronized 
D-function, no node will perform any synchronized action unless its entire 
history of CONSENSUS_ V-FUNCTIONS states is the same as every 
other node performing the action. This is largely a redundant mechan-
ism; see Chapter VII. 

Individual Y-functions 

Some of the non-secret Y-functions presented in this subsection will have 

unique values, never obtainable by another node. For example, a node's record 

of its own past public keys will be unique. Other V-functions covered here may 
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have nearly the same values across nodes. but this strict consensus is not 

enforced as in the previous subsection. For example. 

PARTIALS_RECEIVED_FROM contains node ids of all the nodes from which a 

node has received partial keys. These may vary as the partial keys are received 

in different orders and possibly from different sets of nodes. but those main-

tained by all participated nodes will ultimately include node ids from all partici-

pated nodes. Just as CONSENS US_ V-FUNCTIONS was used to denote the 

entire collection of consensus V-functions. INDIVIDUAL_ V-FUNCTIONS will be 

used to denote the collection of individual V-functions. 

OWN_NODE:node-icl: Y-function 
Comment: Returns the node-id which identifies the instant node for its entire 

life. The value should be distinct from that of all other nodes. so that 
CERTIFY will allow the node to be initiated into the network. Examples of 
possible actual implementation values include the simple serial numbers 
of a node or the initial node public key. 

PHASE: 1..2: V-function 
Initial value: PHASE = 1 
Comment: Returns the current phase. either 1 or 2. which is used by all syn-

chronized o-functions. When PHASE = 1 a node will add its signature to 
any announcement or action which has insufficient signatures and does 
not raise an exception. then the node will change to PHASE = 2. When 
PHASE = 2 a node will not add its signature to any announcement. In 
either phase. when a node receives an announcement with sufficient sig-
natures and no exception is raised. it will perform the effects section. 
which includes setting PHASE = 1 and incrementing CYCLE. 

CYCLE:integer: Y-function 
Initial value: CYCLE = 1 
Comment: The basis of all synchronization of the network. this monotonically 

increasing value ensures that all nodes will process synchronized 0-
functions in exactly the same order. Returns the serial number of the 
next announcement or action which the present node has yet to perform. 
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NEW_NODE_PUBLIC:public-key. Y-function 
Initial value: NEW_NODE_PUBLIC: = undefined 
Comment: Returns the instant node's own new node public key. which 

corresponds with NEW_NODE_PRIVATE, and whose value was determined 
during the last CREATE_KEYS. 

NEW_APPLICATION_PUBLIC:public-key. V-function 
Initial value: NEW_APPLICATION_PUBLIC: = undefined 
Comment: Returns the instant node's own new application public key, which 

corresponds with NEW_APPLICATION_PRIVATE, and whose value was 
determined during the last CREATE_KEYS. 

ALL_OWN_NODE_PUBLICS:set of public-key. V-function 
Initial value: create (INITIAL_NODE-EEED) E: 

ALL_OWN_NODE_PUBLICS 
Comment: Returns all the node public keys that have been used by the 

instant node to sign proposals which are pending. Because the number of 
proposals pending can be kept from growing too large, through the use of 
CANCEL_PROPOSAL, cardinality(ALL_OWN_NODE_PUBLICS) can be kept 
to a modest size. INITIAL-NODE_SEED is a variable which is local to the ini-
tialization and which is defined in the description of NODE_PRIVATE. 

PAR TIALS_RECEIVED_FROM :set of node-id: Y-function 
Initial value: PARTIALS_RECEIVED_FROM = empty 
Comment: Returns the set of nodes for which the instant node has received 

partial keys during the current key creation period. This Y-function is 
emptied by CREATE_KEYS, and new members are added to it by 
RECEIVE_NEW_PARTIALS, NEW_PARTICIPANT_RECEIVE and 
RECEIVE_NEW_PARTICIPANT. The unsynchronized D-function 
PARTIALS_RECEIVED issues signed statements of minimum content of 
PARTIALS_RECEIVED_FROM. These statements must be received from 
all nodes who participate in a CHANGE_KEYS, and they must include 
every such participating node. The statements are also checked for by 
CHANGE_PRESENT to ensure that all nodes made present have partial 
keys from all other nodes made present, which ensures that all necessary 
RECEIVE_NEW_PARTICIPANT and NEW_PARTICIPANT_RECEIVEs have 
completed for any PARTICIPATEed nodes. 

§5 Templates, Template Types, &. Primitives 

Input and output parameter passing mechanisms are described 

which include constructed descriptions of hierarchically encrypted 

data, and primitives for performing cryptographic operations on 

data. 
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An unusually powerful parameter mechanism has been incorporated into 

the specification language used here. for several reasons. First. it allows the 

underlying structure of multiply encrypted messages to be shown clearly. 

Second. it allows much of the routine checking and cryptographic transforma-

tions to be handled cleanly. and without complicating the rest of the algorithm 

description unnecessarily. Third. the particular form used here can also provide 

descriptive names. types, and sometimes values for the parts of parameters. 

Templates 

The basic syntax for the parameter description mechanism, called a tem-

plate, is shown in the following productions: 

template name :construction 
construction -+ * constructor-type <item-list> I 

constructor-type <item-List> 
constructor-type -+ signed I sealed I signatured 
item e:q>ression = name : type I name :type I 

expression = :type I name: I :type 
item-list item-list, item I item 
type simple-type I construction 

The constructor types are covered in the next subsection. A * denotes a 

part of a template, or an entire template, that is optional. The rules for when 

the optional parts must appear in input, and when they are output are covered 

in the subsection on template primitives. the names which may appear in a 

template serve as the formal parameters. An item in a template may include an 

expression. When an expression provides a value for an item in a template 

describing input. the actual parameter supplied must have the identical value; 

when an expression provides a value for an item in a template describing output. 

the value provided is output. 
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Notice that all five non-empty possible combinations of the three com-

ponents of an item can be used in a template. One form of item is name :type . 

It is the usual formal parameter when used for input, and is used to return the 

value of the formal parameter (which must be of the specified type) in an output 

template. Another form of item is ezpression = :type, which is used in an 

input template to cause an initial "bad template" exception if the correspond-

ing input actual parameter does not have the value of the expression. It is used 

in an output template to return a value for which a parameter name is not 

needed. The most elaborate form is ezpression = name :type. It serves the 

same function as the previous form, except that a parameter name is associated 

with the value. When only a name is supplied, name:, the type and value are 

obtained from another item with the same name. When only a type is supplied, 

:type, the value of the parameter is ignored. 

Several items or even whole templates in an D-function may share the same 

name. Items with the same name must have the same value. Templates with 

the same name are just different copies of the same template. The next section 

contains a number of templates which may serve as instructive examples. 

Tern plate Types 

The three template types were shown in the formalism of the previous sub-

section as consLru.ctor-type. This subsection gives a detailed description of 

each, but these descriptions are best taken together with those of the template 

primitives of the following subsection. 

59 



signed 

signatured 

sealed 

A digital signature of a structure of constituent elements. (See 
the primitives sign. and check-signature.) 
A collection of digital signatures of the same material. There 
are several possible implementations of the notion of signa-
tured such as repeated encryption of a single bit string. indivi-
dually signed seperate copies of the same bit string. signatures 
made on a compression of the matter to be or a combi-
nation of these approaches. It may also be desirable to expli-
citly include in the signatured some bits indicating who has 
made each signature. (See the primitives sign and 
check-signatured.) A signatured may also include timestamps 
provided by the s ignat ories. (See the primitives 
latest-signature and earliest-signature.) 
An encrypted form of the constituent elements of a structure. 
These should include a random component. as described in 
Chapter II. (See the primitives seal and unseal) 

Template Primitives 

The following primitive functions are used to perform cryptographic 

transformations on input and output of D-functions. Input parameters which are 

included in a signatured signed or sealed construction must be the subject of a 

check-signatured. check-signature or unseal primitive respectively if the con-

stituent items of the construction are to be accessed. Once the primitive is 

applied. free use can be made of the items of the construction. The omission of 

optional input constructions in an "actual parameter" (those marked by a ,.. in 

the "formal parameter") which are the subject of check-signatured or 

check-signature cause these primitives to return false. Optional output con-

structions are output if and only if their signed construction is the subject of a 

sign primitive. Any signatured constructions appearing as input will be output 

with an additional signature if they are the subject of a sign primative-even 

though the construction name does not appear in an output section. 

The following identity provides an example of some of the template primi-

tive functions. It simply asserts that sealing and signing are inverses when keys 

created from the same seed are used. 
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if s = create-seed 0 then 
m=unseal (seaZ(m, create-pubZir: (s», create-private (s» 

The following are definitions of the template primitives: 

sign (signed< a:llDY-type, ... >, k:private-key) .... 
Optional output parameters are output iff their signed struc-

. ture is the subject of a sign primitive. 

seaZ (sealed< a:llDy-type .... >, k:public-key) .... 
Must be applied to any output structure that is of type sealed. if 
that structure will be included in o-function output. The public 
key k is used to perform the encryption. 

unseal (sealed<a:any-type, ... >, k:private-key) .... 
Makes accessible (but does not actually return) the unsealed, 
i.e. un-encrypted, form of the input structure s iff s was the 
output of an o-function which resulted from a seal primitive 
applied with the public key corresponding to the private key k. 

check-signature (s:signed<any-type· .. >, k:public-key) .... boolean 
Checks the digital signature of the subject input structure s by 
decrypting it with the public key k and checking for the redun-
dancy required by convention, and returns true iff the signa-
ture passes the test. 

check-signatured (s: signatured<llDy-type ... >, k:set of public-key. m:integer) .... 
boolean 
Returns true iff a set of digital signatures of the subject input 
structure s can be checked as having been formed by holders 
of m private keys corresponding to m of the public keys con-
tained in the set of keys k (Le. 3p:set of public-key 
l cardinality (P) = m /\ p C k /\ ""n:public-key l if n E: p then 
check-signature (s, nH 

latest-signature (s:signatured<any-type· .. > ) .... time 
Returns the most recent timestamp contained in the signatures 
of s. 

earliest-signature (s:signatured<llDy-type' .. > ) .... time 
Same as latest-signature except the time of the earliest. 
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§6 Synchronized D-functions 

Presents the remainder of the specification language and uses it to 

define the major D-functions of the proposed design. 

The D-functions presented in this section define all the . synchronized 

actions performed by the network. These allow for consensus by the nodes on 

the state of the network, and implement all the changes in network status. Fig-

ure 1 shows the D-functions which change the status of individual nodes, such as 

by certifying them into the network, removing nodes from the network, and res-

tarting a disabled node. The CHANGE_KEYS D-function of the figure allows a set 

of nodes to each change their public keys and receive new partial keys from the 

other nodes, once the new partials have been sealed with the receiving node's 

new keys. One other D-function. not shown in the figure. has an impact on the 

network status. It establishes the minimum values of important system parame-

ters. 

Properties of the synchronization mechanism are demonstrated in Chapter 

VII. For the present purposes, it is important to notice that synchronization is 

provided by a cycle counter, CYCLE, maintained by each node. Each node can 

perform the action of only one synchronized D-function call for each successive 

cycle. A majority of present nodes must each sign a template which defines 

every synchronized D-function call and the numbered cycle during which it is to 

be performed. No node signs more than one template during a single cycle. 

This arrangement ensures that nodes perform exactly the same D-function call 

during each cycle number. In particular, the CONSENSVS_ V-FUNCTIONS of 

all nodes in a particular cycle are guarantee to be identical. 

Chapter II gave a description of three levels of trustees: trustees at level 1 

are not in a position to compromise system security, but are able to perform 

the day to day operations necessary to ensure the system's reliability: trustees 
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at level 2 establish policy and make security relevant decisions; trustees at level 

3 are not part of the mechanism of this chapter, but are considered in Chapter 

VII, as mentioned above. The present section is divided into those o-functions 

callable by trustees at levell, and those callable by trustees at level 2. Before 

any trustee level 2 o-function call can be made, however, it must be proposed: 

the definition of the security relevant parts of the call must be included in a 

trustee level 1 call to PROPOSE, which takes up one cycle. After this call has 

been made, a delay of length cooling-off-interval is enforced before the trustee 

level 2 action can be performed, by the corresponding trustee level 2 call. Any 

other actions may occur during intermediate cycles, and the trustee 2 level call 

can be blocked from ever occurring by the CANCEL_PROPOSAL synchronized 0-

function. The following two subsections provide the details of each of these two 

kinds of synchronized o-functions. Before the o-functions can be presented, 

however, the remainder of the specification language must be described. 

G-junc tion Syntax a.nd Sema.ntics . o-functions are composed of five 

major parts, roughly following the the structure put forward by Parnas [72]. For 

the purposes of the present work, the simple input parameter list of the Parnas 

notation has been extended into optional input and output parts, which use the 

template mechanism described in the previous section. The third part of an 0-

function is merely for documentation. The fourth part lists a series of named 

exception conditions, all of which are checked sequentially. If all the checks are 

successful, then the effects part (the fifth part) is performed. 

Some of the statements which make up the effects part are boolean expres-

sions. They have the effect of changing their constituent V-functions or formal 

parameters to values which make the expression true. Other statements do not 

return values, but rather are composed of primitive functions with side effects. 

There is no implied sequential order of execution. All values of V-functions 

within the effects part represent the value of the V-function after the entire 0-
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function is completed. Those V-functions whose names are enclosed in single 

quotes represent the value of the V-function before the call to the D-function. 

The foliowing productions give the syntax of D-function definitions and their five 

parts: 

O-function -+ header input output comment exceptions effects 
header input comment exceptions effects 1 
header output comment exceptions effects 
he ader -+ name: O-function 
input -+ Input: template 
output -+ Output: template 
comment -+ Comment: wildcard 
exceptions -+ Exceptions: exception-list 

exception-list -+ exception-list ,exception 1 exception 
exception -+ name: boolean-expression 

effects -+ Effects: statement 
statement -+ boolean-expression 1 !statement-list J 1 

if boolean-expression then statement 1 

if boolean-ex1)ression then statement else statement 
with name [expression ]statement 

statement-list -+ statement-list, statement 1 statement 
boolean-expression -+ boolean-expression 1 

(boolean-expression) 1 

boolean-primitive-function (expressio'TJrlist) 1 

expression predicate expression 1 
if boolean-expression then boolean-expression 1 

if boolean-expression then boolean-expression 
else boolean-expression 
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quantifier nClme :elementary-type fboolean-expression J 1 

quantifier name :elementaT'lj-type 
quantifier name :elementaT'lj-type fboolean-expression J 

expression -+ name 1 'name 'I expression operator expression 1 
(expression) 1 name [expression] 1 

name [expre ssion ] [expression] 1 

let name = expression 1 

with name [expression]expression 1 

tion (expression-list) 
expression-list -+ expressio'TJrlist, expression 1 expression 

The keyword "let" is used to establish temporary variables within 0-

functions to avoid re-writing long expressions. The keyword "with" is used, 



much as in some programming languages, to extend the qualification of a name 

(in this case, a part of a construction selected by a particular index) over an 

expression. 

Trustee 2 D-functions 

There are three trustee level 2 D-functions. The CERTIFY function is used 

to bring new nodes into the network. as can be seen in Figure 1. This function is 

critical to the security of the entire system because if sufficient corrupted or 

even subverted nodes (see Chapter III) are brought into the network. then many 

of the security measures are useless. It can also be used to establish and 

modify a set. for each non-applied node. of nodes that the node can replace dur-

ing a restart. (This might be used in an application where some nodes have data 

so sensitive that some vaults should never be able to access it.) 

The SELMINIMA function is also very important. It establishes the 

minimum margin (the significance of which is discussed in Chapter VII). the 

minimum quorum of present nodes required for system operation. and the 

amount of time a node will wait to participate before it erases its own secret. V-

function values. All three of these parameters determine the difficulty of the 

various attacks which could be perpetrated against the system. 

The final level 2 function is REMOVE_NODES. It simply allows nodes to be 

taken out of the network. as illustrated in Figure 1. 

One thing to notice about these function definitions is that some of the 

latter exceptions and initial effects are the same. These common mechanisms 

are used to establish synchronization. When one of these functions is called and 

the ANNOUNCEMENT template does not have signatures from a majority of present 

nodes (and the present node has not added its signature to an announcement of 

the current cycle). then the node simply adds its signature to the announce-
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ment and returns; when one such function is called and there are sufficient sig-

natures on the announcement. the node changes to phase 1 of the next cycle 

and performs the required action. Thus. to perform a particular synchronized 

action as a particular cycle. at least a majority of present nodes in phase 1 of 

that cycle must first be called to obtain sufficient signatures on the desired 

announcement. and then this announcement can be used in subsequent calls to 

cause any node to perform the synchronized action. 

The following are the detailed function definitions: 

CERTIFY: o-function 
Input: 

ANNO UNCEMENT:signatured 

<NODE_CERTIFIED :node-id 
NODE_KEY: public-key. 
APPLICATION_KEY:public-key. 
NODES_RESTARTABLE:set of node-id 
TRUSTEES-BUPPLYlNG:set of node-id 
TRUSTEES _PARTIALS :table[node-id] of 

TR USTEE_PARTIALS: sealed 
<:table[node-id] of partial-key>. 

PROPOSAL_CYCLE_II : integer. 
CYCLE = CYCLE_# : integer, 
COMPRESSED_HISTORY = :integer. 
certify = :announcement-kind>. 

PROPOSAL: signatured 
< NODE_CERTIFIED : node-id 
NODE_KEY: public-key. 
APPLICATION_KEY:public-key, 

NODES_RESTARTABLE:set of node-id 
LATESLTIMESTAMP:time. 

PROPOSALCYCLE_# :integer. 
propose-certify = :proposal-kind> 

Comment: The set of nodes the NODE_CERTIFIED is allowed to restart is 
changed to NODES_RESTARTABLE. If the NODE_CERTIFIED node id is not in 
NODES_IN_USE. then it becomes included in NODES_IN_USE. and the 
NODE_KEY and APPLICATION_KEY parameters input are used to establish 
table entries corresponding to the new node. All nodes change the set of 
nodes the NODE_CERTIFIED is allowed to restart to NODES_RESTART ABLE . If a 
node's own id appears in its NODES_RESTARTABLE then it is allowed to be 
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" 

APPLYed. The NODE_CERTIFIED recovers the OWN_TRUSTEE_PARTIALS 
that are needed by merging the TRUSTEEJ'ARTIALS input by a 
trustee-2-quorum. The OWN_TRUSTEE_PARTIALS that are no longer 
needed are erased. 

Exceptions: 
BAD_NODE_CERTIFIED: NODE_CERTIFIED € USED_NODE_IDS 
PROPOSAL-HOTJ'ENDlNG: PROPOSAL_CYCLE_II It PROPOSALS_PENDING 
INS UFFICIENT-TR USTEE_2-SIGNATURES: che ck-signrLture d, 

(ANNOUNCEMENT_DEFINITION, trustee-2-publics, trustee-2-quorum) 
INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 

SIGNATURES_OF_MAJORITY_OF_PRESENTS = 
check-signrLtured,(ANNOUNCEMENT, 
( if n € PRESENT then NODE_PUBLICS[nB L MAJORITY» 

INSTANT_NOT_SIGNATORY: (k € ALL o WN_NODE_PUBLICS /\ 
check-signrLture (PROPOSAL, k)J 

TOO_EARLY: now - LATEST-TIMESTAMP < cooling-off-interurLl 
Effects: 

if SIGNATURES_OF _MAJORITY_OF _PRESENTS then 
(sign (ANNOUNCEMENT, NODE_PRIVATE), PHASE = 2J 

else 
PROPOSAL_CYCLE_# It PROPOSALS_PENDING, 
CYCLE = 'CYCLE'+l, 
PHASE = 1, 
COMPRESSED_HISTORY = 

compress('CONSENSUS_ V-FUNCTIONS '}, 
CERTIFICATION[NODE_CERTIFIED] = NODES_RESTARTABLE, 
if NODE_CERTIFIED t 'NODES_IN_USE'then 

(NODE_CERTIFIED E: NODES_IN_ USE, 
APPLICATION_PUBLICS[NODE_CERTIFIED] = APPUCATION-KEY, 
NODE_PUBLICS[NODE_CERTIFIED] = NODE_KEY, 
LAST_CHANGES[NODE_CERTIFIED] = 0, 
SUB-PARTIALS_REMAINING[NODE_CERTIFIED] = 

if NODE_CERTIFIED = OWN_NODE then 
(V'k:node-id( if k € TRUSTEES_SUPPLYING then 

unsea.l(TRUSTEES'_PARTIALS[k], NODE_PRIVATEH, 
V'r:node-id t if r € NODES_RESTART ABLE /\ 

r t 'CERTIFICATION'[OWN_NODE] then 
OWN_ TR US TEE_PAR TIALS[r ] = merge-PrLrtirLls ( 
t''O''k:node-idt if k E: TRUSTEES_SUPPLYING then 

with TRUSTEES' _PARTIALS[k] 

'o'n:node-id if n E: 'CERTIFICATION '[OWN_NODE] /\ 
nit NODES_RESTARTABLE then 

OWN_TRUSTEE_PARTIALS[n] = 
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SET_MINIMA: G-function 
Input: 

ANNO UNCEMENT:signalured 
<NEW_MINIM UM_QUOR UM:inleger, 
NEW_MINIMUM_MARGIN:integer, 
NE W _S UICIDE_INTERVAL :integer, 
PROPOSAL_CYCLE_I :integer, 
CYCLE = CYCLE_II :integer, 
COMPRESSED_HISTORY = :integer, 
set-minima = :announcement-ldnd>, 

PROPOSAL : signatured 
<NEW_MINIM UM_QUOR UM : integer, 
NEW_MINIMUM_MARGIN:integer, 
NEW _S UICIDE_INTERVAL :integer, 
LATEST_TIMESTAMP:time, 
PROPOSAL-CYCLE_II : integer, 
propose-set-minima = :proposal-ki.nd> 

Comment: The Y-functions holding the minimum values are changed to the 
values of the corresponding parameters. The new minima must not be 
larger than a possible current actual as opposed to minimum value. 

Exceptions: 
NEW_MINIMUM_MARGIN_TOO_SMALL: NEW_MINIMUM_MARGIN < 1 
NEW_MINIMUM_MARGIN_TOO_BIG: NEW_MINIMUM_MARGIN> MARGIN 
NEW_MINIMUM_QUORUM_TOO_BIG: NEW_MINIMUM_QUORUM> QUORUM 
PROPOSAL-NOT_PENDING: PROPOSAL-CYCLE_II It PROPOSALS_PENDING 
INS UFFICIENT _TR USTEE_2...SIGNATURES: check-signature d 

(ANNO UNCEMENT _DEFINITION, truste e -2-publics, trustee -2-quorum ) 
INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 

(let SIGNATURES_OF _MAJORITY_OF _PRESENTS = 
che ck -signature d (ANNO UNCEMENT, V n:node-id 
t if n E: PRESENT then MAJORITY)) 

INSTANT-NOT-SIGNATORY: E: ALL_OWN_NODE_PUBLICS /\ 
check-signature (PROPOSAL, kH 

TOO_EARLY: now - LATEST-TIMESTAMP < cooling-off-interual 
Effects: 

if then 
NODE_PRIVATE), PHASE = 

else l 
PROPOSAL-CYCLE_I It PROPOSALS_PENDING, 
CYCLE = 'CYCLE'+l, 
PHASE = 1, 
COMPRESSED_HISTORY = 

compress('CONSENSUS_ V-FUNCTIONS '), 
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MINIMUM_QUOR UM = NEW_MINIMUM_QUORUM. 

MINIMUM_MARGIN = NEW-MINIMUM_MARGIN. 
S UICIDE_INT ERVAL = NEW_SUICIDEJNTERVAL i 

REM OVE_N ODES: D--function 
Input: 

ANNOUNCEMENT;signatured 

<NODES_TO_REMOVE;set of node-hI. 
PROPOSAL-CYCLE_I ; integer. 
CYCLE = CYCLE_If ;integer. 
COMPRESSED_HISTORY = ;integer. 
remove = ; announcement-kinci> , 

PROPOSAL;signatured 
<NODES_TO_REMOVE;set of node-id 
LATEST_TIMESTAMP;time, 
PROPOSAL-CYCLE_1f ; integer. 
propose-remove = ;proposal-kind> 

Comment: The node ids of the NODES_TO_REMOVE are removed from 
NODES_IN_USE, and all secret table entries for the NODES_TO_REMOVE are 
erased. The removed nodes commit suicide. 

Exc eptions: 
NO_SUCH_NODE_IN_USE; -.NODES_REMOVED C NODES_IN_ USE 
REMOVING_PRESENT; 3n:node-id fn E: NODES_REMOVED /\ n E: PRESENT 
PROPOSAL_NOT_PENDING; PROPOSAL_CYCLE_I t PROPOSALS_PENDING 
INS UFFICIENT _TR USTEE_2....SIGNATURES: -. che ck -signature d 

(ANNOUNCEMENT_DEFINITION, trustee-2-publics, trustee-2-quorum) 

INSTANT-ALREADY_SIGNED-AHNOUNCEMENT: PHASE = 2/\ 
-.(let SIGNATURES_OF_MAJORITLOF_PRESENTS = 

check-signatured (ANNOUNCEMENT, 
f if n E: PRESENT then MAJORITY» 

INSTANT_NOT_SIGNATORY: -.3K:public-key fk E: ALL_OWN_NODE_PUBLICS /\ 
check-signature (PROPOSAL, 

TOO_EARLY: now - LATEST-TIMESTAMP < 
Effects: 

if ..,SIGNATURES_OF_MAJORITY_OF_PRESENTS then 
tsign(ANNOUNCEMENT, NODE_PRIVATE), PHASE = 2i 

else t 
PROPOSAL-CYCLE_II t PROPOSALS_PENDING, 
CYCLE = 'CYCLE'+l, 
PHASE = 1, 
COMPRESSED_HISTORY = 

compress('CONSENSUS_ V-FUNCTIONS '}, 
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NODES_IN_USE = 'NODES_IN_USE' - NODES_TO_REMOVE, 

USED_NODE_IDS = 'USED_NODE_IDS' U NODES_TO-REMOVE, 

APPLIED = 'APPLIED' - NODES_TO_REMOVE, 

'V'n:node-id if n e: NODES_TO_REMOVE then 
= erased, 

'V'i:integer if 1 SUB-PARTIALS_REMAINING[n] then 
lSUB-PARTIALS[n][i] = erasedBB 

if OWN_NODE e: NODES_TO_REMOVE then suicide (oH 

Trustee 1 o-functions 

The PROPOSE and CANCEL_PROPOSAL functions were discussed above as 

they cross over the boundary between trustee levelland trustee level 2. The 

remaining functions covered in this section are illustrated in Figure 1. 

The APPLY function takes any suitably certified node in a "veteran" state 

(Le. a node that has been present before), and makes it "applied," that is dedi-

cates it to a particular application and disqualifies it from being the replacing 

node in a restart. The CHANGE_PRESENT function transfers nodes between the 

present and participated states, and also may change the current majority. The 

RESTART function was touched on in Chapter IV, and is simply a way for a 

replacing node to resume the application processing of the disabled replaced 

node. The PARTICIPATE function can be used to transfer a single node from 

some state outside the participated state to the participated state, an effect 

which is usually achieved by a key change. 

The remaining two functions are related. First, the CREATE_KEYS function 

is called and results in each node forming a new set of keys, and outputting the 

appropriate public keys. These public keys are then used in conjunction with 

un-synchronized G-functions, described in the following section, to distribute 

new partial and sub-partial keys among the nodes hoping to participate in the 

key change. Other synchronized G-functions may be taking place while these 
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keys are exchanged. Finally. during some later cycle. the CHANGE_KEYS 0-

function is called. It defines the new set of participated nodes and causes all 

business of the network to be conducted under the new keys. 

Again. there are common exceptions and parts of the effects which provide 

synchronization. The function definitions are as follows: 

PROPOSE: o-function 
Input: 

ANNO UNCEMENT JJEFINITION:signatured 

Output: 

<PROPOSALDEFINITION: 

* < NODE_CERTIFIED :node-id. 
NODE_KEY: public-key, 
APPLICATION_KEY:public-key. 

NODES_RESTARTABLE:set of node-id>. 
* <NEW_MINIMUM_QUOR UM:integer. 
NEW_MINIMUM_MARGIN:integer. 
NEW -SUICIDE_INTERVAL :integer>. 
* < NODES_TO_.REMOVE:s et of node-id>. 

KIND_OF _PROPOSAL: proposal-kind. 
CYCLE = CYCLE_Ii :integer. 
COMPRESSED_HISTORY = :integer. 
propose = :action-kind>. 

PROPOSAL : signed 
<PROPOSAL_DEFINITION:. 
LATEST-TIMESTAMP:time. 
'CYCLE I = CYCLE_Ii :intcger. 
KIND_OF_PROPOSAL:proposal-kind> 

Comment: A Signed copy of a definition of the proposed action. PROPOSAL. is 
output which includes the latest single timestamp of the quorum of nodes 
signing the announcement. 

Exceptions: 
INS UFFlCIENT _TR USTEE_LSIGNATURES: che ck -signature d. 

(ANNOUNCEMENT, trustee-I-publics, trustee-I-quorum) 
INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 

Effects: 

(let SIGNATURES_OF_MAJORITY_OF_PRESENTS = 
check-signatured. (ANNOUNCEMENT_DEFINITION, l'v'n:node-id 

l if n E: PRESENT then NODE_PUBLICS[n]B. MAJORITY)) 
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if then 
PHASE = 

else i 
CYCLE = 'CYCLE'+l, 
PHASE = 1, 
COMPRESSED_HISTORY = 

compress('CONSENSUS_ V-FUNCTIONS '), 
CYCLE_* e: PROPOSALS_PENDING. 
LATEST_TIMESTAMP = latest-signature (ANNOUNCEMENT_DEFINITION). 
sign(PROPOSAL, NODE_PRIVATEH 

CANCEL_PROPOSAL: o-function 
Input: 

ANNOUNCEMENT_DEFINITIoN:signatured 
<PROPOSALS_TO_CANCEL:set of integer. 
CYCLE = CYCLE_* :integer. 
COMPRESSED_HISTORY = :integer. 
cancel = :action-kind> 

Comment: The PROPOSALS_TO_CANCEL are removed from 
PROPOSALS_PENDING and therefore can no longer be used. 

Exceptions: 
BAD_PROPOSALS: -PROPOSALS_TO_CANCEL !: PROPOSALS_PENDING 
INS UFFICIENT _TR USTEE_LSIGNATURES: - check-signature d 

(ANNOUNCEMENT, truste e-1-publics. trustee-1-quorum) 
INSTANT-ALREADY-SIGNED-ANNOUNCEMENT: PHASE = 2/\ 

Effectsi 

- (let SIGNATURES_OF _MAJORITY_OF _PRESENTS = 
check-signatured (ANNOUNCEMENT_DEFINITION, ("v"n:node-id 

( if n e: PRESENT then L MAJORITY» 

if -SIGNATURES_OF_MAJORITY_OF_PRESENTS then 
tsign(ANNOUNCEMENT-DEFINITION), PHASE = 

else ( 
CYCLE = ·CYCLE'+l. 
PHASE = 1. 
COMPRESSED_HISTORY = 

c ompress('CONSENS US_ V-FUNCTIONS '), 
PROPOSALS_PENDING = PROPOSALS_PENDING -
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APPLY: G-function 
Input: 

ANNOUNCEMENLDEFINITION:signatured 
<NODES_TO-APPLY:set of node-id. 
CYCLE = CYCLE_II :integer, 
COMPRESSED_HISTORY= :integer, 
apply = :action-kind> 

Comment: The identified node(s) are added to APPLIED. and all their 
certification is removed. They expunge their own set of trustee partials. 
The subject nodes can now adopt an application. and can no longer be 
used as the replacing node in a restart. 

Exc eptions: 
BAD_NODES: C NODES_IN_USE 
ALREADY_APPLIED : .3n:node-i.d tn E: NODES_TO_APPLY /\ n E: 

INADEQUATE_CERTIFICATION: 3n:node-id tn E: NODES_TO-APPLY /\ 
n fl CERTIFICATION[n] 

INSUFFICIENT_TRUSTEE_LSIGNATURES : 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 
(let SIGNATURES_OF_MAJORITY_OF_PRESENTS = 

che ck-signatured (ANNOUNCEMENT_DEFINITION, tV'n;node-i.d 
ifn E: PRESENT then NODE_PUBLICS[n]B, MAJORITY» 

Effects: 
if then 

fsign(ANNOUNCEMENT_DEFINITION), PHASE = 
else t 
CYCLE = ·CYCLE'+l. 
PHASE = 1, 
COMPRESSED_HISTORY = 

compress('CONSENSUS_ V-FUNCTIONS '), 
V'a:node-id t if a E: NODES_TO-APPLY then CERTIFICATION[a] = empty l. 
if OWN_NODE E: NODES_TO-APPLY then V'n:node-i.d 

ifn E: CERTIFICATION[OWN_NODE] then 
OWN_TRUSTEE_PARTIALS[n] = erasedl. 

APPLIED = 'APPLIED' U NODES_TO-APPLY! 

CHANGE_PRESENT: G-function 
Input: 

ANNO UNCEMENT JJEFINITION:signatured 
<NODES_TO_BECOME_PRESENT:set of node-id. 
NODES_TO_BECOME-ABSENT:set of node-id. 
NErCMAJORITY:integer, 
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CYCLE = CYCLE_# :integer, 
COMPRESSED_HISTORY = :integer, 
change-presents = :action-kind> 

MINIM UM_PARTIALS_RECEIVED : signatured 
<KEY_CREATION_# = :integer. 
NODES_RECEIVED-FROM: se t of node-id 
partials-Teceived = :transfer-kind> 

Output: 
*SUB-PARTIALS_RELEASED:set of partial-key 

Comment: The nodes to be made present are made present, the nodes to be 
made absent are made absent, and the majority assumes the new value 
provided. The new configuration must be compatible with the 
MINIMUM_MARGIN, and the QUORUM. The MINIMUM_PARTIALS_RECEIVED 
signed by the NODES_TO_BECOME_PRESENT ensure that the nodes made 
present have received all the partial keys they may require. If the 
NEW_MAJORITY is less than the current quorum, but not less than the 
minimum quorum, then sub-partials are publicly released so that the 
effective quorum is lowered to the NEW_MAJORITY. 

Exceptions: 
NEW_MAJORITY_TOO_SMALL: NEW_MAJORITY < MINIMUM_QUORUM 
NEW_MAJORITY_TOO_BIG: NEW_MAJORITY> (let NEW_NODE_COUNT = 

cardinality(PRESENT) + cardinality (NODES_TO_BECOME-PRESENT) -
cardinality (NODES_TO_BECOMK.ABSENT» 

NEW_MAJORITY_TOO_SMALL: MINIMUM_QUORUM> NEW_MAJORITY 
INSUFFICIENT_MARGIN: NEW_NODE_COUNT > 

(NEW_MAJORITY x 2) - MINIMUM_MARGIN 
NOT-ABSENT: ABSENT 
NOT-PRESENT: NODES_TO_BECOME-ABSENT !;: PRESENT 
INS UFFICIENT _MINIM UM_PARTIALS_RECEIVED_FROM_SIGNATURES: 

check-signatured (MINIM UM_PARTIALS_RECEIVED, 
NODE_PUBLICS [(PRESENT U NODES_TO_BECOME-PRESENT)-

NODES_ TO_BECOME_ABSENT] , 
NEW_NODE_COUNT) 

INS UFFICIENT _MINIM UlLPARTIALS_RECEIVED_FROM: 3 n:node-id 
(n E: NODES_TO_BECOME_PRESENT /\ 
n t NODES_RECEIVED_FROM 

INS UFFICIENT -E UB -PARTIALS: 
3n:nodc-id E: NODES_IN_ USE /\ 3i:integer 
lLAST_CHANGES[n] = i/\ 
SUB-PARTIALS_REMAINING[n] < QUOR UMS [i]-NEW_MAJORITYj 

INS UFFICIENT_TR USTEE_LSIGNATURES: 
(ANNOUNCEMENT, trustee-I-pUblics, trustee-I-quorum) 

INSTANT....ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 
SIGNATURES_OF_MAJORITY_OF_PRESENTS = 

check-signatured(ANNoUNCEMENT_DEFINITION, ('Vn:node-id 
l ifn E: PRESENT MAJORITY» 
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Effects: 
if SIGNATURES_OF _MAJORITY_OF -PRESENTS then 

(sign (ANNOUNCEMENTJJEFlNITION) , PHASE = 2J 
else 
CYCLE = 'CYCLE'+l, 
PHASE = 1. 
COMPRESSED_HISTORY = 

c ompress('CONSENS US_ V-FUNCTIONS '), 
PRESENT = ('PRESENT'-NODES_TO-BECOME-ABSENT) U 

NODES_TO_BECOME_PRESENT. 
MAJORITY = NEW_MAJORITYJ 
if MAJORITY < QUORUM then 'o'n:node-id 

( if n NODES_IN_ USE 1\ (let NS_QUORUM = 
QUORUMS[LAST_CHANGES[n]]) > NEW_MAJORITY then 

HSUB-PARTIALS_REMAINING[n] = 
'SUB -PARTIALS_REMAINING'[n]-

NS_QUORUM-NEW_MAJORITYJ. 
fV'i. int.eger l if NS_QUORUM < NEW_MAJORITY then 
S UB - PAR TIALS[n] 

['SUB-PARTIALS_REMAINING'[n]-i-
NEW_MAJORITY] SUB-PARTIALS_RELEASEDB B 

RESTART: D-funct.ion 
Input: 

ANNO UNCEMENT -DEFINITION: signatured 
<REPLACED_NODE :node-id 
REPLACING_NODE :node-id 

Output: 

CHECKPOINT: (see ISSUE_CHECKPOINT). 
CYCLE = CYCLE_# :integer, 
COMPRESSED_HISTORY = : integer. 
restart = :action-kind> 

* PARTIAL-FOR-ASSUME_APPLICATION:signed 
<REPLACED_NoDE:node-id 
REPLACING-HODE :node-id 
PARTIAL_SUPPLIED:sealed<partial.-key>. 
RESTART_to_ASSUME_APPLICATION = :transfer-kind> 

Comment: The replaced node, which must be applied and not present, is in 
effect REMOVE_NODESed. The replacing node must be certified to 
replace the replaced node. and it becomes applied. The replacing node is 
supplied with partials for the replaced node. These are used in 
ASSUME_APPLICATION to recover the replaced node's application data 
and messages sent after the last checkpoint. 
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Exceptions: 
BAD_REPLACED_NODE: REPLACED_NODE e: PRESENT V 

REPLACED_NODE t NODES_IN_ USE 
BAD_REPLACEMENT_NODE: REPLACING_NODE PARTICIPATED 

REPLACING_NODE e: APPLIED 
INADEQUATE_CERTIFICATION: REPLACED_NODE t. 

CERTIFICATION[REPLACING_NODE] 
INSUFFICIENT_TRUSTEE_L..8IGNATURES; -check-signatured 

(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum.) 

INSTANT-.ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 

EtIects: 

-(let SIGNATURES_OF_MAJORITY_OF_PRESENTS = 
check-signatured (ANNOUNCEMENT_DEFINITION, 

ifn e: PRESENT then NODE_PUBLICS[n]n, MAJORITY» 

if - SIGNAT URES_ OF _MAJORITY_ OF _PRESENTS then 
(sign (ANNOUNCEMENT_DEFINITION), PHASE = 

else 
CYCLE = 'CYCLE'+l, 

PHASE = 1. 
COMPRESSED_HISTORY = 

compress('CONSENSUS_ V-FUNCTIONS '), 
REPLACED_NODE t. NODES_IN_ USE. 
REPLACED_NODE e: USED_NODE_IDS, 

APPLICATION_PUBLICS[REPLACING_NODE] = 
APPLICATION_PUBLICS[REPLACED-NODE], 

REPLACING_NODE e: APPLIED, 
REPLACED_NODE t. APPLIED, 
PARTIAL_KEYS[REPLACED_NODE] = erased. 

'Vi:integer t if 1 SUB -PARTIALS_REMAINING[n] then 
tSUB-PARTIALS[REPLACED_NODE][i] = 

PARTIAL-BUPPLIED = 'PARTIAL_KEYS'[REPLACED_NODE], 
seal (PARTIALS UPPLIED, NODE_P UBLICS [REPLACING_NODE ]). 
sign'(PARTIALFOR-ASSUME_APPLICATION, NODE_PRIVATE), 

if OWN_NODE = REPLACING_NODE then 
ifn e: CERTIFICATION[REPLACING_NODE] then 

OWN_ TRUSTEE_PARTIALS[n] = erased B, 
if OW N_N ODE = REPLACED_NODE then suicide (OH 
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PARTICIPATE: D-function 
Input: 

ANNO UNCEMENLDEFINITION:signatured 
<NODE_PARTICIPATED :node-:id 
NODES_RECEIVED_FROM:set of node-:id 
PARTIALS_ALREADY-RECEIVED:signatured 

Output: 

<KEY- CREATION_# = : integer. 
NODES_RECEIVEDJ'ROM:set of node-:id 
partialsJT'eceived = :transfer-kind>. 

CYCLE = CYCLE_II :integer. 
COMPRESSED_HISTORY = :integer. 
participate = :action-kind> 

* SUB-PARTIALS_S UPPLlED:signed 
< CYCLE = CYCLE_# :integer. 
SUB-PARTIALs:sealed<:table[node-:id] of partial-key>. 
PARTICIPATE_to_NEW_PARTICIPANT_RECEIVE = : 

transfer-kind> 
*PARTIALS-AND_SUB-PARTIALs:table[PARTICIPATED] of 

PARTIAL-AND_SUB -PARTIALS : signed 
<RECIPIENT:node-id 
PARTIAL: sealed< partial-key>. 
NUMBER_OF_SUB-PARTIALS:integer. 
SUB-PARTIALs:sealed<table[integer] of partial-key>. 
PARTICIPATE_to_RECEIVE_NEW_PARTICIPANT = : 

transfer-kind> 
Comment: Participated nodes each supply the node to be participated with 

sub-partials of every node for which the node to be participated is miss-
ing partial keys. The node to be participated issues partials and sub-
partials for itself to all the participated nodes, just as in issue-partials. 
Two unsynchronized D-functions are allowed: 
RECEIVE_NEW_PARTICIPANT for the participated nodes to pick up their 
partials and sub-partials (not as new). and NEW_PARTICIPANT-RECEIVE 
for the entering node to pick up a set of sub-partials. 

Exceptions: 
BAD-.NODE.J'ARTICIPATED: NODE.J'ARTICIFATED E: PARTICIPATED V 

NODE_PARTICIPATED t NODES_IN_ USE 
INSUFFICIENT_SUB-PARTIALS: E: NODES_IN_ USE /\ 

LAST_CHANGES[NODE_PARTICIPATED] < LAST_CHANGES[n] /\ 
SUB-PARTIALS_REMAINING[n] < 

BAD-ALREADY_RECEIVED_FROM_SIGNATURES: check-signatured 
(PARTIALS-ALREADLRECEIVED. 
NODE_PUBLICS[NODES_RECEIVED_FROM] U 

NODE_PUBLICS [OWN_NODE]. 
cardinality(NODES_RECEIVED_FROM+l}) 
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INSUFFlCIENT_TRUSTEE_LSlGNATURES: 
(ANNOUNCEMENT, trustee-l-quorum) 

INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 

Effects: 

SIGNATURES_OF_MAJORITY_OF_PRESENTS = 
check-signatured.(ANNOUNCEMENT_DEFlNITION, t'dn:node-id 

t if n e: PRESENT then NODE_PUBLICS[n]B. MAJORITY» 

if then 
tsign(ANNOUNCEMENT-DEFINITION), PHASE = 

else 
CYCLE = 'CYCLE' + 1. 
PHASE = 1. 
COMPRESSED_HISTORY = 

compress('CONSENSUS_ V-FUNCTIONS '). 
SUB-PARTIALS_REMAINING[NODE_PARTICIPATED] = 

NUMBER_OF_SUB-PARTIALS. 
if 3n:node-id!n e: NODES_IN_ USE /\ 

LASLCHANGES[NODE_PARTICIPATED] < LAST_CHANGES[n] then 
SUB-PARTIALS_REMAINING[n] = 

'SUB 
if NODEYARTICIPATED #- OWN_NODE then 

('d 
p:node-id I if P e: PARTICIPATED /\p t. NODES_RECEIVED_FROM then 

(SUB-PARTIALS[P] = 
SUB -PARTIALS[p]['SUB -PARTIALS_REMAINING'[P]]. 

else 

seal(SUB-PARTIALS[P]' 
sign(SUB-PARTIALS-SUPPLIED, 

I'd 
p:node-id I ifp e: PARTICIPATED /\p t. NODES_RECEIVED_FROM then 

PARTIALS-AND_SUBPARTIALS[P] 
= p, 

PARTIAL = forrrtJpartial (p, PARTIAL-SEED, 
APPLICATION_PRIVATE, 
QUORUM). 

seal(PARTIAL , NODB_PUBLICS[P]). 
'di:integer I if 1 NUMBER_OF_SUBPARTIALS then 

ISUB-PARTIALS[i] = for'TTU-partial( 
p, PARTIAL_SEED , 
form-partial(i, PARTIAL_SEED, 

APPLICATION_PRIVATE, 
QUORUM), 

QUORUM) 
seal (SUB-PARTIALS, NODE_PUBLICS[P]])B 

sign(PARTIALAND-SUB-PARTIALS, NODE_PRIVATE)L. 
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suicide «earliest-signature (ANNOUNCEMENT_DEFINITION) + 
SUICIDE_INTERVAL) -nowOHB 

CREATE_KEYS: o-function 
Input: 

ANNOUNCEMENT-DEFINITION:signatured 

Output: 

<NEW_QUORUM:integer. 
NEff-SUB-PARTIALS_NEEDED:table[NODES_IN_USE] of integer. 
CYCLE = CYCLE_# :integer, 
COMPRESSED_HISTORY = : integer, 
create-keys = :action-kind> 

NEff-KEYS: signed 
< KEY_ CREATION_II = :integer. 
NEW -APPLICATION_PUBLIC:public-key, 
NEW_NODE_PUBLlC:public-key. 
CREATE_KEYS_to_ISSUE_NEW_PARTIALS&CHANGE_KEYS = : 

transfer-kind> 
EXTENDERS:table[integer] of 

EXTENDER: signed 
<KEY_CREATION_# = :integer. 
INDEX: integer. 
EXTENSION:sealed<table[integer] of partial-key>. 
CREATE_KEYS_to_NEW_PARTICIPANT_RECEIVE = : 

transrer-kind> 
Comment: New node and application keys are created. Also a new seed for 

the new partial keys, which will use the new quorum, is created. The ini-
tial number of sub-partials needed for each node is recorded. New pub-
licsare output. The issue new partials and receive new partials unsyn-
chronized actions are allowed. This action may occur more than once to 
change the new quorum. even though no change to new keys has 
occurred. The set of nodes the instant node would allow to become parti-
cipated in a CHANGE_KEYS is emptied. If a node is to become partici-
pated but lacks partials for some other node which is not going to be par-
ticipated, then the first node must be the subject of a PARTICIPATE 
before a CHANGE_KEYS. 

Exceptions: 
NEW_QUORUM_TOO_SMALL: NEW_QUORUM < MINIMUM_QUORUM 
INS UFFICIENT_TRUSTEE_LSIGNATURES: check-signature d 

(ANNOUNCEMENT, trustee-l-publics. trustee-l-quorum) 
INSTANLALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 

(let SIGNATURES_OF _MAJORITY_OF _PRESENTS = 
check-signatured (ANNOUNCEMENT_DEFINITION, l"<::tn:node-id 

l ifn e: PRESENT then NODE_PUBLICS[n]B, MAJORITy) 
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Effects: 
if then 

PHASE = 
else l 
CYCLE = 'CYCLE'+l, 
PHASE = 1, 
COMPRESSED_HISTORY = 

compress('CONSENSUS_ V-FUNCTIONS '), 
KEY_CREATION_# = 'KEY_CREATION_# '+1, 
QUORUMS[LAST_CHANGE + 1] = NEW_QUORUM, 
PARTIALS_RECEIVED_FROM = empty, 
APPLICATION-SEED = create-seed O. 
NEW_APPLICATION_PRIVATE = (APPLICATION-SEED). 
NEW_APPLICATION_PUBLIC = create-public (APPLICATION_SEED), 
NODE_SEED = create-seedO, 
NEW_NODE_PRIVATE = (NODE-SEED), 
NEW_NODE_PUBLIC = (NODE-BEED) , 
PARTIAL_SEED = 
NEW_SUB-PARTIALS_REMAINING = NEW-SUB-PARTIALS_NEEDED. 
'\;fi:integer 

l if 1 < i!5; NEW_SUB-PARTIALS_REMAINING[OWN_NODE] then 
'\;f J:integer l if 1 < J < i then 

lwith EXTENDERS[i] 
lINDEX = i. 
EXTENSION[J] = Jorm-partial( 

i, PARTIAL-SEED, 
(J, PARTIAL_SEED, 
NEW_APPLICATION_PRIVATE, 
QUORUMS[LAST_CHANGE + 1]). 

QUORUMS[LAST_CHANGE + l])lB 
seal(EXTENSION, create-public 

(i, PARTIAL_SEED, NEW_APPLICATION_PRIVATE, 
QUORUMS[LAST_CHANGE + 1])), 

sign (EXTENDER , NEW_NODE_PRIVATE)l 

CHANGE_KEYS: o-function 
Input: 

ANNO UNCEMENT _DEFINITION : signatured 
<NODES_PARTICIPATlNG:set of node-id, 
EVERY-PARTICIPANTS_NEW_KEYS:table[node-id] of --NEW_KEYS_FROM_CREAT E_KEYS : signed 
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<KEY_CREATION_# = :integer. 
NEW-APPLICATION_PUBLIC:public-key. 
NE W _NODE_PUBLIC:public-key, 
CREATE_KEYS_to_ISSUE_NEW_PARTIALS8&CHANGE_KEYS = : 

transfer-kind> 
CYCLE = CYCLE_# :integer. 
COMPRESSED_HISTORY = :integer, 
change-keys = :action-kind> 

MINIM UM_PARTIALS-RECEIVED :signatured 
<KEY- CREATION_# = :integer. 
NODES_RECEIVED_FROM: se t of node-id 
partials-received = :transfer-kind> 

Comment: The new keys, partials and sub-partials for all the included nodes 
are changed to their new values that have previously been supplied. 
(Contlict between the supplied publics and any publics already received 
are ignored because this causes no real security problem, and if the 0-
function were blocked by a confiict, a single node could deadlock the sys-
tem.) The new keys, partials, and sub-partials for all un-included nodes, 
except the present node, are erased. The set of participated nodes is 
changed to the included nodes. 

Exceptions: 
INSUFFICIENTYARTICIPATION: PRESENT C NODES_PARTICIPATING 
BAD_PARTICIPANTS: C NODES_IN_ USE 
INVALID_NEW_KEYS: 3n:node-id E: NODES_PARTICIPATING /\ 

check-signature (EVERY_PAR TICIPANTS_NEW_KEYS[n], 
NODE_PUBLICS [n]) 

PARTICIPANTS_LAClLNON - PARTICIPANT S_PARTIALS:3p, n:node-id 
lP E: NODES_PARTICPATING /\ 
n E: (NODES_IN_USE-NODES_PARTICIPATING) /\ 
LAST_CHANGES[P] < 

INSUFFICIENT_MINIM UM_PARTIALS_RECEIVED_FROM_SIGNATURES: 

NODE_PUBLICS [NODES_PARTICIPATING]. 
cardinality (NODES_PARTICIPATING» 

INS UFFICIENT _MINIM UM_PARTIALS_RECEIVED_FROM: 
NODES_PARTICIPATING C NODES_RECEIVED_FROM 

NEW_QUORUM_TOO_BIG: QUOR UMS [LASL CHANGE + 1] > MAJORITY 
INSUFFICIENT_TRUSTEE_LSIGNATURES: check-signatured 

(ANNOUNCEMENT, trustee-l-publics, trustee-i-quorum) 
INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\ 

Effects: 

SIGNATURES_OF_MAJORITY_OF_PRESENTS = 
check-signafured(ANNOUNCEMENT_DEFINITION, 

if n E: PRESENT then NODE_PUBLICS[n]B. MAJORITY» 

if then 
PHASE = 
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else I 
CYCLE = ·CYCLE'+l. 
PHASE = 1. 
COMPRESSED_HISTORY = 

c ompress('CONSENS US_ V-FUNCTIONS '), 
PARTICIPATED = NODES_PARTICIPATING, 

QUORUM = QUORUMS[LAST_CHANGE + 1], 
SUB-PARTIALS_REMAINING = NEW_SUB-PARTIALS_REMAINING, 
NODE_PUBLICS[OWN_NODE] e: ALL o WN_NODE_P UBLICS , 
PARTIALS_RECEIVED_FROM = NODES-PARTICIPATING. 

'QI'p:node-id if P e: PARTICIPATED then 
EVERY_PARTICIPANTS_NEW_KEYS [P] 

tAPPLICATION_PUBLICS[P] = NE',LAPPLlCATION-PUBLlCJ, 

NODE_PUBLICS[P] = NEW-HODE-PUBLICJ, 

PARTIAL_KEYS[p] = NEW_PARTIALKEYSfp], 
'QI'i:integer if 1 NEW_SUB-PARTIALS_REMAINING[P] then 

SUB -PARTIALS[P][i] = NEW_SUB -PARTIALS[P][i]B, 
suicide «earliest-signature (ANNOUNCEMENT-DEFINITION) + 

SUICIDE_INTERVAL) - nowO)J 

§7 Un-Synchronized O-functions 

Presented are the remaining o-functions, which support the 0-

functions of the previous section and allow release of information. 

The previous section was concerned with synchronized o-functions, which 

are designed in such a way that every node will accept only the same sequence 

of calls and in the same order. The present section is concerned with the other 

o-functions: those which can be invoked in many possible orders. The fact that 

they can be used in a less structured way than those previously discussed does 

not mean that these o-functions are an invitation to chaos. On the contrary, 

some of these o-functions provide increased reliability and robustness of the 

network even in spite of the trustees. Others of these o-functions have no effect 

on a node's state, and are merely used to obtain signed and possibly sealed data 

about the nqde's state. Yet others are tied directly into the synchronized 0-
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functions. and merely act as extensions of these D-functions to allow additional 

rounds of information exchange. 

Synchronized o-function Support 

This subsection defines five un-synchronized D-functions. The first two are 

used between the initial CREATE_KEYS and the closing CHANGE_KEYS. as 

described in the previous section. The first of these. ISSUE_NEW_PARTIALS. 

takes as input the new public keys of a node released during CREATE_KEYS and 

outputs partial keys and sub-partial keys sealed with the new public key 

received. The second D-function. RECEIVE_NEW_PARTIALS. takes as input the 

output of this first D-function created by another node and simply records the 

partials and sub-partials after unsealing with its new private key. 

A second pair of D-functions serves a similar purpose. but is used following a 

PARTICIPATE D-function call. One D-function. RECEIVE_NEW_PARTICIPANT. is 

used by all but the node to be participated. and simply records the public. par-

tial, and sub-partial keys released by the subject node during the PARTICIPATE. 

The other D-function of the pair. NEW_PARTICIPANT_RECEIVE. is used by the 

subject node to collect the sub-partials and extenders provided it by the non-

subjects during the PARTICIPATE. The fifth and final D-function, 

ASSUME_APPLICATION. allows the replacing node of a restart to assume the 

application key of the replaced node. 

The following are the unsynchronized supporting D-functions: 
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ISSUE_NEW_PARTIALS:D-function 
Input: 

SUPPLIER :node-id. 
NEW_PUBLICS: signed 

Output: 

< KEY_ CREATION_# = :integer. 
S UPPLIER-.NE W_NODE_PUBLIC:public-key. 

CREATE_KEYS_to_ISSUE_NEW_PARTIALS&CHANGE_KEYS = : 
transfer-kind> 

PARTIAL-AND_SUB -PARTIALS : signed 
< KEY_ CREATION_# =:integer. 
SUPPLIER :node-id. 
PARTIAL:sealed<:partial-k:ey>. 
SUB -PARTIALS:sealed< :table[integer] of partial-k:ey>. 
ISSUE_NEW_PARTIALS_to_RECEIVE_NEW_PARTIALS = : 

transfer-kind> 
Comment: The supplied new public application key is used to seal the partial 

and the number of sub-partials for each node established in 
CREATE_KEYS. 

Exceptions: 
INVAliD_SUPPLIER: SUPPLIER t NODES_IN_ USE. 
INVALID_SUPPLIER_SIGNATURE: check-signature (NEW_PUBLICS. 

NODE_PUBLICS (S UPPLIER») , 
Effects: 

PARTIAL = form-partial(SUPPLIER, PARTIAL_SEED. 
NEW_APPLICATION_PRIVATE. QUORUMS[LAST_CHANGE + 1]), 

seal(PARTIAL. SUPPLIER_NEW_NODE_PUBLIC), 
V'i:integer 

f if 1 NEW_SUB-PARTIALS_REMAINING[OWN_NODE] then = form-partial 
(SUPPLIER. PARTIAL_SEED. 

form-partial(i. PARTIAL_SEED. 
NEW_APPLICATION_PRIVATE. 
QUOR UMS[LASL CHANGE + 1]). 
QUORUMS[LAST_CHANGE + 

sealeS UB-PARTIALS. SUPPLIER_NEW-HODE_PUBLIC), 
sign (PARTIAL-AND_S UB -PARTIALS , NODE_PRIVATE) 
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Input: 
SUPPLIER :node-id. 
PARTIAL-AND_SUB-PARTIALs:signed 

< KEY_ CREATION_# = : integer. 
OWN_NODE:node-id. 
PARTIAL:sealed<:partial-key>. 
SUB-PARTlALs:sealed<:table[integer] of partial-key>. 
ISSUE_NEW_PARTIALS_to_RECEIVE_NEW_PARTIALS = : 

transfer-kind> 
Comment: The new partials and sub-partials output by 

ISSUE_NEW_PARTIALS are recorded. 
Exceptions: 

INVALID_SUPPLIER:SUPPLIER t NODES_IN_USE 
INVALID_SUPPLIER-BIGNATURE: check-signature 

(PARTIAL-AND-BUB-PARTIALS. NODE_PUBLICS[SUPPLIERJ) 
Effects: 

unseal (PARTIAL. NEW_APPLICATION_PRIVATE). 
NEW_PARTI.ALKEYS[SUPPLIER] = PARTIAL. 
unseal (SUB-PARTIALS. NEW_APPLICATION_PRIVATE) 
'di:integer f if 1 NEW_SUB-PARTIALS_REMAINING[SUPPLIER] then 

NEW_SUB-PARTIALS[SUPPLIER][i] = SUB-PARTIALS[i]J. 
SUPPLIER e: PARTIALS_RECEIVED_FROM. 

Input: 
NODE_BECOMINGJARTICIPATED:node-id 
PARTIAL-AND_SUB-PARTIALs:signed 

< OWN_NODE = RECIPIENT:node-id 
PARTIAL:sealed<:partial-key>. 
NUMBER_OF _S UB-PARTIALS :integer. 
SUB-PARTIALs:sealed<:table[integer] of partial-key>. 
PARTICIPATE_to_RECEIVE_NEW_PARTICIPANT = : 

transfer-kind> 
Comment: The participated nodes making an additional node participated 

are allowed to use this D-function to record the partials and sub-partials 
issued to them by the entering node during the BECOMEJARTICIPATED. 

Exceptions: 
BAD-BIGNATURE: check-signature 

(PARTIAL-AND_S UB-PARTIALS. 
NODE_PUBLICS [NODE_BECOIlING_PARTICIPATED J) 
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Effects: 
unseal (PARTIAL, APPLICATION_PRIVATE), 
PARTIAL_KEYS[NODE_BECOMING-PARTICIPATED] = PARTIAL, 
lunseal(SUB-PARTIALS, APPLICATION_PRIVATE) 
'\;fil if 1 NUMBER_OF_SUB-PARTIALS then 

SUB-PARTIALS[NODE_BECOMING_PARTICIPATED][i] = 
SUB-PARTIALS[i]B. 

NODE_BECOMING_PARTICIPATED e: PARTIALS_RECEIVED_FROM, 

NEW_PARTICIPANT_RECEIVE:o-function 
Input: 

SUB-PARTIAL_SUPPLlERS:set of node-id 
ALL-SUB-PARTIALS_SUPPLIED:table[SUB-PARTIAL-SUPPLlERS] of 

S UB-PARTIALS_SUPPLIED : signed 
< CYCLE = CYCLE_# :integer, 
SUB-PARTIALs:sealed<:table[node-id] of partial-key>, 
PARTICIPATE_to_NEW_PARTICIPANT_RECEIVE = : 

transfer-kind> 
EXTENDERS:table[node-td] of 

EXTENDER: signed 
<KELCREATION_# = :integer, 
INDEX: integer. 
EXTENSION:sealed<:table[integer] of partial-key>, 
CREATE_KEYS_to_NEW_PARTICIPANT_RECEIVE = : 

transfer-kind> 
Comment: The node which has become participated is allowed to use this 0-

function to obtain the sub-partials issued it by the quorum of participated 
nodes during a PARTICIPATE, and thereby obtain a full set of partials and 
also - sub-partials. It is then able to list itself in its 
PARTIALS_RECEIVED_FROM. indicating it has received sufficient partials 
and allowing it to become present. 

Exceptions: 
NOT _ENOUGH_SUPPLIERS: cardinality (SUB -PARTIAL-SUPPLIERS) < 

QUORUM 
BAD-SUPPLIERS: C pARTICIPATED 
BAD-SUPPLIER_SIGNATURE: 3n:node-id (n e: SUB-pARTIAL-SUPPLIERS /\ _ 

(SUB-PARTIALS-SUPPLIED[n] , NODE_PUBLICS[nH 
BAD-EXTENDER-SIGNATURE: 3n:node-id 

ILAST_CHANGES[OWN_NODE] < LAST_CHANGES[n] A 
check-signature (EXTENDERs[n]. NODE_PUBLICS[n]) 

WRONG_EXTENDER: 3 n:node-td 
lLAST_CHANGES[OWN_NODE] < LAST_CHANGES[n] /\ 

EXTENDERS[n] 
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SUB-PARTIALS_REMAINING[n]B 
Effects: 

1 if s e: SUB-PARTIAL-SUPPLIERS then 
with ALL-SUB-PARTIALS_SUPPLlED[S] 

unseal (SUB-PARTIALS, APPLICATION_PRIVATE)J, 
'V'p:node-id 

1 if LAST-CHANGES[OWN_NODE] < LAST_CHANGESf:p] then 
PARTIAL_KEYS[p] = 

if s e: SUB-PARTIAL.SUPPLIERS then 
with 

'V' p:node-td 
if LAST_CHANGES[OWN_NODE] < LAST_CHANGES[p] then 

fwith EXTENDERS[P] 
lunseal(EXTENSION, create-private(PARTIALKEYS[p]). 

1 if 1 SUB-PARTIALS_REMAINING[p] then 
SUB -PARTIALS[P][i] = n I, 

OWN_NODE e: PARTIALS_RECEIVED_FROM 

ASSUME_APPLICATION: D-function 
Input: 

PARTIAL-BUPPLIERS:set of node-id 
PARTIALS_SUPPLIED:table[node-id] of 

PARTIAL: signed 
<REPLACED_NODE :node-id 
OWN_NODE = REPLACINGJVODE:node-id 
PARTIAL-B UPPLIED :sealed< :partial-key>, 
RESTART_to_ASSUME_APPLICATION = :transfer-kind> 

CHECKPOINT: (see ISSUE_CHECKPOINT) 
Comment: The replacing node of a restart is enabled to perform this opera-

tion, which involves receiving partials for the replaced node, and using 
them to obtain the saved application data from the checkpoint formed by 
the replaced node, and messages sent after the checkpoint was formed. 

Exc eptions: 
BAD-BUPPLIERS; l: NODES_IN_ USE 
BAD-BUPPLIER_SlGNATURES: 3n:node-id In e: PARTIAL-BUPPLIERS /\ 

lwith PARTIALS-BUPPLIED[n] 
(PARTIAL, 

Effects: 
"o'n:node-id l if n e: PARTIAL-SUPPLIERS then 

with PARTIALS_SUPPLIED[n] 
unseal (PARTIAL....S UPPLIED , APPLICATION_PRIVATEH. 
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""'n:node-id if n E: PARTIALSUPPLIERS then 
APPLICATION_PUBLICS = 

merge-partials(withPARTIALS-SUPPLIED[n]PARTIAL-SUPPLIED)J 

Information Releasing G-functions 

The last two D-functions are given in this subsection. Unlike the previous 

D-functions, they are not closely tied to any particular synchronized D-functions. 

They release information about the node's state, but do not alter its state. The 

PARTIALS_RECEIVED D-function allows a node to provide a signed statement 

about those nodes it has received current partial keys from. The 

ISSUE_CHECKPOINT o-function is unique in that it includes no input template, 

which means it does not check any signatures of input parameters, and thus can 

be freely called by anyone. This is appropriate because the output of this 0-

function provides, among other things, an authenticated snap-shot of the node's 

public state, which Chapter VII will show to be useful to those seeking to trust 

the network. Another use of checkpoints, that of saving enough of a node's state 

to make restart possible, was mentioned in Chapter IV. A further practical use 

of this D-function is to allow verification of the state certified into a node, which 

can allow new nodes to skip over a possibly long prefix of synchronized 0-

function calls. 

The following are the information releasing un-synchronized o-functions: 

PAR TIALS_RECEIVED: o-function 
Input: 

MINIM UM_PARTIALS_RECEIVED : signatured 
<KELCREATION_# = :integer. 
NODES_RECEIVED_FROM :set of node-id. 
partials-received = 

Comment: The instant node adds its signature to the set of node ids input iff 
this set is a subset of the instant node's PARTIALS_RECEIVED_FROM. 
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Exceptions: 
NOT-ALL_PARTIALS-RECElVED; 3n;node-:id 

{n E: NODES_RECElVEDJROM A 

Effects: 

n Jt PARTIALS_RECEIVED_FROM A 
n ¢ A 
KEY_CREATION_# ¢ 0 

sign (MINIMUM_PARTIALS_RECEIVED, NODE_PRIVATE) 

ISS UE_ CHECKPOINT: o-function 
Output: 

CHECKPOINT: signed 
<INDIVIDUAL_ V-FUNCTIONS = ; any-1.ype, 

CONSENSUS_ V-FUNCTIONS = ; any-type, 

ALL_CURRENT_SECRETS; 
sealed<APPLICATION_SECRET_ V-FUNCTIONS = ; 

any-type> , 

ALL_NEW_SECRETS: sealed 
<NEW_APPLICATION_SECRET_ V-FUNCTIONS = : 

any-type> , 

checkpoint: transfer-kind> 
Comment: Causes the receiving node to output a signed copy of all its 

INDIVIDUAL_ V-FUNCTIONS and CONSENSUS_ V-FUNCTIONS state. 
A copy of its current secret state sealed with its current 
APPLICATION_PUBLICS and a copy of its new secret state sealed with 
NEW_APPLICATION_PUBLIC. 

Effects: 
seal (ALLCURRENT_SECRETS, APPLICATION_PUBLICS), 
seal (ALLNEW_SECRETS , NEW_APPLICATION_PUBLIC), 
sign (CHECKPOINT, APPLICATION_PRIVATE) 
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Chapter VI 

Operational Example 

An example use of the algorithms of Chapter V, in the form of anno-

tated calls, illustrates the use of the algorithms and shows hOlf a 

three node network can be established 

This chapter presents an example which shows how a simple network of 

three nodes can be brought into existence. The number three was selected 

because it can illustrate many of the important aspects of larger systems-·in 

an example of manageable size. The heart of the chapter is a series of 0--

function calls, de scribed in terms of a modified form of the templates intro-

duced in the previous chapter. 

The proofs of Chapter VII will all begin with the assumption that a network 

exists initially. One way to establish this initial condition in practice is to apply 

the techniques of Chapter IX for certifying the appropriate initial state defining 

the desired network into each node of the network. The present chapter shows 

an alternative approach, in which the algorithms of the previous chapter can be 

used to initially establish a network. This approach begins with a set of nodes 

that are all in the initial state, as defined in Chapter V. Through a series of 0--
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function calls. such as those presented in this chapter. the nodes are all brought 

into an appropriate initial state which defines the desired network. 

An approach like the one presented here may prove more convenient in 

practice -especially if "off-the-shelf" nodes are to be used. 

§1 Adding in Three Nodes 

Gives D-function calls for making three initial nodes present. 

The first half of establishing a network is to add in the nodes one at a time. 

Three nodes, a, b. and c. are each successively added into the network in this 

section. A specially modified form of input template is used in this chapter to 

show the actual parameters of each £}.function call. 

Adding Node a, Into an Empty Network 

The very first step in forming a network is to propose the certification of 

the first node. As can be seen by inspecting the modified template below. it 

represents a call to the PROPOSE £}.function. Recall from Chapter V that such a 

call requires a signature of a majority of the trustees at level 1. Notice how the 

signatured constnLCto-r-t.ype of the original template has been replaced by the 

primiti:ue-/unciion sign in the modified template below, and how the private key 

corresponding to the public key trustee-l-publics is denoted in the second argu-

ment to the primitive. This is intended to indicate that a single trustee of level 1 

has added its signature to the actual parameters. (One trustee of each level is 

assumed in this chapter for simplicity, without loss of generality.) 

Another thing to notice is that the actual parameter values are shown in the 

modified template using roughly the same syntax used by values in the tem-

plates of the previous chapter. The symbol a denotes the node id of the first 

node added; D.n denotes its node public key; alJ denotes its application key; and 
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faJ represents the set containing the single node id of the subject. The cycle 

number of 1 is used because this is the initial value of the cycle number accord-

ing to the Y-function definition of Chapter V. Similarly. the value 0 is used for 

the compressed history. since this is the initial value of this Y-function. 

PROPOSE (ANNOUNCEMENT_DEFINITION:sign 
(PROPOSAL_DEFINITION: 

<a = NODE_CERTIFIED:node-id. 
Iln = NODE_KEY:public-key. 
all = APPLICATION_KEY:public-key. 

= NODES_RESTARTABLE:set of node-id.>. 
propose-certi/y = KIND_OF_PROPOSAL:proposal-kind. 
1 = CYCLE_# : integer. 
0= COMPRESSED_S TATE: integer. 
propose = :action-kind). 

When the call to PROPOSE above has been made. the proposal signed by a 

is output. This signed proposal. along with an announcemenl definilion signed 

by truslee 2. comprise lhe nexl call. which is shown below. 

One thing new in this call is lhe compression of the aggregale Y-function 

which contains all the consensus Y-functions. The inclusion of this value. serves 

in effect as a cryplographic check sum of the consensus slate of the node during 

the previous cycle. as mentioned in Chapter V. The subscripl of 1 indicates lhal 

the value of the Y-function during cycle 1 is desired. Because the aggregale 

includes COMPRESSED_HISTORY. the checksum is actually "chained" through 

the entire history of consensus stales. A constant. tl' of type time is shown. It 

represenls the time at which a signed the proposal. 
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CERTIFY(ANNOUNCEMENT:sign 
«a = NODE_CERTIFIED:node-id. 
Don = NODE_KEY:public-key. 
a" = APPUCATION_KEY:public-key, 
(ai = NODES_RESTARTABLE:set of node-id. 
empty = TRUSTEES_SUPPLYING:set of node-id. 
TRUSTEES'_PARTIALS:table[empty = :node-id] of 

TRUSTEE_PARTIALS:sealed 
<table[empty = :node-id] of partial-key>, 

1 = PROPOSAL_CYCLE_#:integer. 
2 = CYCLE_# :integer. 
c ompress(CONSENS US_ V-FUNCTIONS 1) = :integer. 
certify = :announcement-kind). 
PROPOSAL:sign 

«a = NODE_CERTIFIED:node-id. 
= NODE_KEY:public-key. 

all = APPLICATION_KEY:public-key. 
= NODES_RESTARTABLE:set of node-id. 

t1 = LATEST_TIMESTAMP:time. 
1 = PROPOSAL_CYCLE_#:integer. 
propose-certify = :proposal-kind). a;l» 

Shown next is the template for the call which makes a present and also sets 

the majority to 1. Notice that the output of a call to PARTIALS_RECEIVED is 

included in the input template. 

CHANGE_PRESENT(ANNOUNCEMENT_DEFINITION:sign 
= NODES_TO_BECOME_PRESENT:set of node-id. 

empty = NODES_TO_BECOME_ABSENT:set of node-id. 
1 = NEW_MAJORITY:integer. 
:3 = CYCLE_# :integer. 
compress(CONSENSUS_ V-FUNCTIONS2 ) = : integer. 

= : action-kind). 
MINIMUM_PARTIALS_RECEIVED:sign 

«0 = KEY_CHANGE_#:integer. 
= NODES_RECEIVED_FROM:set of node-id. 

partials-'1"BcBivBd. = : transfer-kind). a.;l» 
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Adding Node b Into the Network 

The next step is to cause the certification of a second node. 'Ibis proceeds 

much as with a. except that now a is the network. This implies that a must be 

called twice for each synchronized D-function: once to obtain as signature on the 

the announcement in phase 1. and a second time to allow a to actually perform 

the action and transistion to the following cycle. 

PROPOSE (ANNOUNCEMENT_DEFINITION:sign 
«PROPOSAL_DEFINITION: 

<b = NODE_CERTIFIED:node-id 
bn = NODE_KEY:public-key. 
bll = APPLICATION_KEY: public-key. 
ta. = NODES_RESTARTABLE:set of node-id>. 

propose-certify = KIND_OF_PROPOSAL:proposal--kind 
4 = CYCLE_# :integer. 
compress(CONSENSUS_ V-FUNCTJONS 3 ) = 

COMPRESSED_STATE: integer. 
propose = :action-kind). trustee-1-publics-1) 

CERTIFY(ANNOUNCEMENT:sign 
«b = NODE_CERTIFIED:node-id 
bn = NODE_KEY:public-key. 
bll = APPLICATION_KEY: public-key. 
(bj = NODES_RESTARTABLE:set of node-id. 
empty = TRUSTEES_SUPPLYING:set of node-id 
TRUSTEES'_PARTIALS:table[empty = :nodc-id] of 

TRUSTEE_PARTIALS:sealcd 
<table[empty = :node-id] of partial-key>. 

4 = PROPOSAL_CYCLE_#:integer. 
5 = CYCLE_#: integer. 
comprsss(CONSENSUS_ V-FUNCTJONS 4 ) = : integer. 
certify = :announcement-kind). trustse-2-publics-1). 

PROPOSAL : sign (sign 
(b = NODE_CERTIFIED:node-id 
bn = NODE_KEY:public-key. 
bll = APPLICATION_KEY:public-key. 
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= NODES_RESTARTABLE:set of node-id. 
t2 = LATEST_ TIMES TAMP: time. 
4 = PROPOSAL_ CYCLE_# :integer. 
propose-certify = :proposaHdnd). a;1). b;l) 

The second node can then be made present in a network comprising two 

nodes. with a majority of 2. 

CHANGE_PRESENT(ANNOUNCEMENT_DEFINITJON:sign 
= NODES_TO_BECOME_PRESENT:set of node-id. 

empty = NODES_TO_BECOME_ABSENT:set of node-id. 
2 = NEW_MAJORITY: integer. 
6 = CYCLE_#: integer. 
compress(CONSENSUS_ V-FUNCTIONS5 ) = :integer. 
change-presents = : action-kind). trustee-2-publics-1) 

MINIMUM_PARTIALS_RECEIVED:sign (sign 
(0 = KEY_CHANGE_#:integer. 

= NODES_RECEIVED_FROM:set of node-id. 
partialsJT'eceived = : transfer-kind). a;l), b;l» 

Adding Node c Into the Network 

The whole process of adding a third node is much like that of adding the 

second. First the node must be certified. 

PROPOSE (ANNOUNCEMENT_DEFINITION:sign 
(PROPOSAL_DEFINITION: 

<c = NODE_CERTIFIED:node-id. 
cn = NODE_KEY:public-key, 
CII = APPLICATION_KEY:public-key. 

b. = NODES_RESTARTABLE:set of node-id.>. 
propose-certify = KIND_OF_PROPOSAL:proposal-kind. 
7 = CYCLE_#:integer. 
compress(CONSENSUS_ V-FUNCTIONSa) = 

COMPRESSED_STATE: integer. 
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propose = :action-kind). trustee-2pu.blics-1) 

CERTIFY(ANNOUNCEMENT:sign 
(c = NODE_CERTIFIED:node-i.d 
Cn = NODE_KEY:public-key. 
CII = 

b, = NODES_RESTARTABLE:set of node-1.d. 
empty = TRUSTEES_SUPPLYING:set of node-1.d 
TRUSTEES'_PARTIALS:table[empty = :node-1.d] of 

TR US TEE_PARTIALS :sealed 
<table[empty = :node-id] of partial-key>. 

7 = PROPOSALCYCLE_# :integer. 
B = CYCLE_# : integer. 
eompress(CONSENSUS_ V-FUNCTIONS?) = :integer. 
certify = 

(c = NODE_CERTIFIED:node-1.d 
en = NODE_KEY:public-key, 
ell = 

b. eJ = NODES_RESTARTABLE:set of node-1.d 
t3 = LATESLTIMESTAMP:time. 
7 = PROPOSAL.CYCLE_# :integer. 
propose-certify = a;l), b;l), e;l» 

The third node can then be added into the network of two nodes. Once this 

is accomplished. a majority less than the total number of nodes is possible for 

the first time. 

CHANGE_PRESENT (AN NO UNCEMENT _DEFINITION :sign 
= NODES_TO_BECOME_PRESENT:set of node-id 

empty = NODES_TO_BECOME_ABSENT:set of node-1.d 
2:: NEW_MAJORITY: integer. 
9 :: CYCLE_#: integer. 
e ompress(CONSENS US_ V-FUNCTIONS e) :: :integer. 

:: : action-kind). trustee-2pu.blics-1) 

MINIM UM_PAR TIALS_RECEIVED: sign (sign (sign 
(0:: KEY_CHANGE_#:integer. 
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{cJ = NODES_RECEIVED_FROM:set of node-id. 
partialsJT"eceived = a;l), b;l), C;I» 

§2 Changing Keys & Setting Minima 

Now that there are three nodes in the network, it is possible to have them 

perform the first key-change. In order to do this, first new keys must be 

created. 

CREATE_KEYS (ANNOUNCEMENT _DEFINITION :sign 
(2 = NEW_QUORUM:integer, 
<0, 0, 0> = NEW_SUB-PARTIALS_NEEDED: 

tableUa, b, cJ = :integer] of integer, 
10 = CYCLE_# : integer, 
compress(CONSENSUS_ V-FUNCTIONS g) = :integer, 
create-keys = :action-kind), trustee-l-publics-1) 

Once the appropriate un-synchronized D-function calls have been com-

pleted, the first partial and sub-partial keys are in place. At this point all the 

keys in the system may be changed, which among other things will give the first 

non-zero quorum. 

CHANGE_KEYS(ANNOUNCEMENT_DEFINITION:sign 
Oa. b, cJ = NODES_PARTICIPATING:set of node-id. 
EVERY_PARTICIPANTS_NEW_KEYS:tableUa, b, cJ = :node-id] of 

NEW_KEYS_FROM_CREATE_KEYS: 
<sign «a! = NEW_APPLICATION_PUBLIC:public-key, 
a[ = NEW_NODE_PUBLIC:public-key), a;l), 
sign«b! = NEW-APPLICATION_PUBLIC:public-key, 
bf = NEW_NODE_PUBLIC:public-key), b;l), 
sign ((cf = NEW_APPLICATION_PUBLIC:public-key, 
cf = NEW_NODE_PUBLIC:public-key), 0;1» 

11 = CYCLE_#:integer, 
compress(CONSENSUS_ V-FUNCTIONS 10) = :integer. 

97 



change-keys = :action-kind> 
MINIMUM_PARTIALS_RECEIVED:sign(sign(sign 

«0 = : integer. 
ta, b. cJ = NODES_RECEIVED_FROM:set of node-i.d. 
partials-received = : transfer-kind). 0.;1). b;l). C;l) 

Once there is a non-zero quorum and a number of nodes which admits a 

majority less than the number of nodes. it will be possible for the trustees at 

level 2 to propose and establish meaningful minima. 

PROPOSE (ANNOUNCEMENT_DEFINITION:sign 
(PROPOSAL_DEFINITION: 

<2 = NEW_MINIMUM_QUORUM:integer. 
1 = NEW_MINIMUM_MARGIN:integer. 
ts = NEW_SUICIDE_INTERVAL:integer>. 

propose-set-minimaKIND_OF_PROPOSAL:proposal-kind. 
12 = CYCLE_# : integer. 
compress(CONSENSUS_ V-FUNCTIONS 11) = :integer. 
propose = :action-kind), trustee-l-publics- 1) 

SET_MINIMA (ANNOUNCEMENT:sign 
(2 = NEW_MINIMUM_QUORUM:integer. 
1 = NEW_MINIMUM_MARGIN:integer. 
ts = NEW_SUICIDE_INTERVAL:integer. 
12 = PROPOSAL_CYCLE_# :integer. 
13 = CYCLE_# : integer, 
compress(CONSENSUS_ V-FUNCTIONS 12) = : integer. 
set-minima = : announcement-kind». trustee-2-publics-1). 

PROPOSAL : sign (sign (sign 
(2 = NEW_MINIMUM_QUORUM:integer. 
1 = NEW_MINIMUM_MARGIN:integer. 
t2 = NEW_SUICIDE_INTERVAL integer. 
t4 = LATEST_TIMESTAMP:time, 
13 = PROPOSAL_ CYCLE_# : integer. 
propose-set-minima = :proposal-kind). 0.;1). b;l). C;l) 
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Chapter VII 

Proofs 

Security and reliability properties of algorithms for multiple vault 

systems are proved. using the assumptions presented in Chapter In. 

This chapter presents a series of simple algorithms which extract many of 

the essential aspects of the detailed algorithms presented in Chapter V. Secu-

rity and reliability properties are then proved for these algorithms. 

§1 Security 

Consider a set of n deterministic finite state automata. or nodes. 

N I • ... • Nn • -operating as independent asynchronous processes. The Si of 

node N;. includes a private key 14-1• known only to Ni . It also includes the set of 

public keys KI • ••• ,Kn. where 14 corresponds with the private key Ki1• Thus, 

with the secure cryptosystem of Chapter III. nodes may sign messages and they 

may check messages received to determine message content and how many, if 

any, nodes have signed a message. 

In order to ensure the consistency of records maintained by the nodes of a 

network. synchronization and a consensus are established. using a cycle counter 
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as in Chapter V. 

LEMMA 1: Any two majorities of nodes have at least one node in common. 

Proof: A first majority is more than half. A second majority can not be more 

than half unless it has at least one node in common with the first majority. _ 

ALGORITHM 1: Let the state of each node N, be S, = (Ki l • K. s(. where 

s;. controls which rule of the algorithm can be performed by node N, and is an 

integer which may be though of as encoding the "consensus state." Initially 

S;. = 1 and = O. for all i. Consider the following algorithm to be performed by 

each node: 

(1) When the ith node is presented with an arbitrary integer as an input mes-

sage A and Si = 1. the node. Ni • outputs its signature of the message. 

Ki-1(A) , and sets s;. = 2. 

(2) When the i th node is presented with a message A that bears the signature of 

a simple majority of nodes. it changes its state to include the message. that 

is becomes A . 

THEOREM 1: Algorithm 1 ensures that all nodes changing their state by rule 2 

will do so with the identical integer A. 

Proof: Notice that a node can add its signature to at most one message. since 

after signing a message in rule 1 of the algorithm. 5, = 2 and rule 1 ensures that 

no signatures can be made made when 5;. = 2. By lemma 1. it is clear that since 

each node signs at most one message, at most one message can receive a major-

ity of signatures. Thus, there is at most one message, A. which can be included 

in any node's state in rule 2. _ 
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An algorithm which comes closer to those described in Chapter V than algo-

rithm 1 will be presented next. It allows nodes to sign messages and change 

states repeatedly. but enforces an ordered sequence of state transitions by use 

of a cycle counter c. 

ALGORITHM 2: Let the state of each node N, be Si = (K;l. K. si' ci' 

where everything is as in algorithm 1 except that an integer cycle counter. ci' 

has been added to the state of each node. Initially si = 1. A;. = O. and c, = 1. for 

all i. Consider the following algorithm to be performed by each node. 

(1) When the i th node is presented with a tuple <j. A>. j = ci. and si = 1. the 

node outputs its signature of the input tuple. K;l( <j. A». and sets Si = 2. 

(2) When the ith node is presented with a tuple <j, A> which bears the signa-

ture of a majority of nodes, for which j = Ci' the node changes its state to 

incorporate A, increments its cycle counter c, by one, and sets s, = 1. 

THEOREM 2: Algorithm 2 ensures that all nodes N with identical cycle 

counter C will have identical values of A. In other words. ....,.i • ....,.j 

( if 1 i n /\ 1 j n /\ ci = Cj then A;. = A,J 

Proof: The desired result follows easily by application of theorem 1 to each par-

ticular value of c .• 

A third algorithm will be presented next which captures more of the essen-

tial flavor of the algorithms of Chapter V. The main extension over algorithm 2 

will be the idea that only a subset of nodes, called "present" nodes, will be 

qualified signatories during each cycle, and that the input of a cycle will be able 

to effect a change in the subset of nodes which are considered present during 

the next cycle. 
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ALGORITHM 3: Lel the state of eacb node N, be 81, = (K;t. K. s1,' c,. P, . .-\). 

where everytbing is as in algorithm 2 except that tbe state S, additionally 

includes a set of public keys P,. which is a subset of K. corresponding to the set 

of present nodes. Initially. s, = 1. "'" = o. c, = 1. and P, = K. for all nodes in N. 

(1) When the ith node is presented with an input tuple <i. P. A>. s, = 1. and 

1 = 0i. the node outputs its signature of the input, Ki"l«1. p, A». and sets 

s, = 2. 

(2) When the i tb node is presented with a tuple <i. P. A> which bears the sig-

natures of a majority of the constituents of Pi' for which 1 = 0i' and 

¢ P K. tbe node changes its state to incorporate A, increments its cycle 

counter a, by one, changes Pi to the new subset P from the input, and sets 

s, = 1. 

THEOREM 3: 
will have 

Algorithm 3 ensures that all nodes with identical cycle count a 

identical A and P. In other words, V'i, 

if 1 i n 1\ 1 1 s n 1\ c, = aj then At = A; /\ Pi = psJ. 

Pro 0/: We proceed by induction on the cycle count c. Initially, 0, = 1, Pi = K. 

and = 0, for all i, by assumption. Let pf denote the value of P in the state S;, 

of node Ni wben c, = l; similarly Ai denotes the value of when ai = l. Then it 

remains to show that pi = pJ and At = AJ implies that if node i and j obtain cycle 

count l+1 then pt+ 1 = Pj+l and A,f+l = AJ+l. This follows directly from the rea-

soning of theorem 1. • 

So far we have been assuming that all nodes function according to the algo-

rithms. Chapter III gave a categorization of possible attacks against vaults. Two 

kinds of attacks, subversion and corruption, could alter the algorithms 

effectively performed by the attacked vault. Next a slightly modified version of 

algorithm 3 is presented that will ensure that the equivalent of theorem 3 holds 

if less than r nodes deviate from the algorithms. 
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LEMMA 2: Any two subsets of a set containing p present nodes. both of which 

contain at least a majority m. of members. where m. > p+2. must have at least a 

margin r of nodes in common, where r = 2Xm.-p. 

Pro 01: To see this notice that the p present members of N can l?e partitioned 

into the following four disjoint subsets, for any two subsets of p. % andy. where 

both % andy each have at least m. elements: nodes in % and not in y, nodes in 'II 

and not in %. nodes in % ny. and nodes in neither % nor'll. Then, 

cardinality(zny) = cardinality(z) + cardinality(y) - cardinality(zuy) 

2xm-c ardi:n.ality (z uy) 2xm. - p. since cardi"!-ality (z uy) p .• 

ALGORITHM 4: Let the state of each node Ni, be 8, = 
K. s,. c,. r. P" where everything is as in algorithm 3 except that the 

state 8 i additionally includes a constant r > O. used as the minimum margin. 

Initially. = O. s( = 1. c, = 1. and Pi = K. for all nodes in N. 

(1) When the ith node is presented with an input tuple <j. p, A>. s( = 1. and 

j = Ci. the node outputs its signature of the input, Ki1( <j, p, A», and sets 

Si = 2. 

(2) When the ith node is presented with an input tuple <j, P. A> which bears . 

the signatures of m nodes, where r 2Xm. - cardinality (Pi)' j = Cit and 

P K. the node changes its state to incorporate A. increments its cycle 

counter c( by one, changes P, to the new subset P from the input, and sets 

s( = 1. 

THEOREM 4: Algorithm.4 ensures that all nodes, Ni. with identical cycle 

count ci that do follow the algorithm will have identical Pi and even if some 

fixed set of less than r nodes do not follow the algorithm. 
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Proo!: This follows easily from the reasoning of theorems 3. because. by lemma 

2. lemma 1 still holds for nodes following the algorithm. _ 

The "the covert partitioning problem" is the problem of ensuring that no 

two nodes obtain the same cycle count without identical values for consensus 

state. 

THEOREM 5: If r or more nodes do not follow algorithm 4. then nodes with 

identical cycle count. c. that do follow the algorithm. can have different values of 

PandA. 

Proo!: Suppose r nodes each add their signature to each of two different tuples 

<j. Pl' AI> and <j. Pe. Ae>. and the remaining nodes in p-I divide into two 

groups, each group of size {cardinality (pi-I) - rh·2 = m - r. One group signs 

the first tuple in rule 1 and the other group signs the second tuple. Then there 

are m valid signatures on each of two tuples with the same cycle count. and so 

nodes can obtain different A and P by rule 2 .• 

THEOREM 6: If all but less than r nodes follow algorithm 4. the irutial 

configuration of a network. sufficient signed tuples. and the current cycle count 

of sufficient nodes with s = 1. determine the complete history of states obtain-

able by any node following the algorithm. 

Proo!.· Notice that theorem 4 guarantees a unique sequence of values of Ai and 

pi, for all i from 1 up to j, obtained by any node following the algorithm. because 

only one tuple can get sufficient signatures for each cycle. Thus. it is easy to 

see that sufficient signed tuples reveal the sequence of values of A and p, and 

that if m members of pi are in cycle i, with s( = 1. then no node has entered 

cycle i+ 1 .• 
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§2 Reliability 

Results concerning the reliability of the proposed systems and 

analysis of threats are presented. 

An extension of algorithm 3 is presented below and then used to show 

necessary and sufficient conditions for the survival of a network. These will in 

turn be used to develop a characterization of possible threats to reliability. 

ALGORITHM 5: Let the state of each node N, be 5, = 

(1<;1. K. Sit Cit Pi' T. where everything is as in algorithm 3 except that the 

state 5, additionally includes a set of public keys T. one corresponding to the 

private key held by each member of a set of trustees. Initially. = O. s" = 1. 

ci = 1. and P, = K. for all nodes in N. 

(1) When the ith node is presented with an input tuple <j. P. A>. s" = 1. j = ci' 

and ¢ Pc K. which bears the signatures of a majority of the constituents 

of T. the node outputs its signature of the input. ,Kt-l( <j. P. A». and sets 

s, = 2. 

(2) When the i th node is presented with a tuple <j. P. A> which bears the sig-

natures of a majority of the constituents of Pi and P. for which j = Cit and 

¢ P c K. the node changes its state to incorporate A. increments its cycle 

counter ci by one. changes Pi to the new subset P from the input. and sets 

s" = 1. 

THEOREM 7: If and only if the following conditions hold for i from 1 up to j 

will at least a majority of members of p; following algorithm 5 obtain C = j+ 1. 

(1) At least a majority of trustees sign at least one tuple <i. P. A> 

(2) At least a majority of live nodes in pi for which C = i receive the same tuple 

<i. P. A> signed by a majority of the trustees. and remain alive long 

106 



enough to output their signature on the tuple by rule 1. 

(3) At least a majority of live nodes in pi+l with c=i receive copies of the tuple 

signed and output by a majority of nodes in pi, and remain alive long 

enough to update their states. 

Proo!: If part: proceed inductively on i. Only if part: it is easy to check that if 

any condition above is false, no node enters c = j+ 1 .• 

Violations of the conditions of theorem 7 above divide naturally into the fol-

lowing categories: 

(1) Trustee violations-no tuples are signed in violation of condition 1, or more 

than one tuple is signed and provided nodes so that a majority of presents 

is not possible, violating condition 2. 

(2) Vault destruction-enough vaults are destroyed so that a majority of vaults, 

as required in condition 2 or 3, does not exist. 

(3) Message loss-enough of the output from condition 2 is irecoverably lost 

that condition 3 can not be met. 

Of course the number of nodes destroyed can change the requirements of 

J:.he kinds of threats covered in (1) and (3) above, however, such interactions do 

not significantly alter the difficulty of accomplishing either kind of threat, as will 

be seen in the following subsections which give more detailed analysis of each 

type of threat. 

Trustee Violations 

The trustees can stop a network from advancing to the next cycle and any 

subsequent cycles by violating condition 1 or 2 of theorem 7. The possible ways 

of violating the condition can be divided into three categories, each requiring a 

different number of trustees to deviate from their proper function. 
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(1) A minority, l = caTdinality(T) - m, of trustee private keys are lost so that 

a majority. m. of trustee signatures on any subsequent tuple can not be 

obtained. 

(2) A margin. T, of trustees covertly partition the trustees (see theorem 5), and 

obtain more than one tuple with the same c. and supply these each to 

enough nodes that condition 2 can not be met. 

(3) A majority of trustees. m. each sign more than one tuple with the same c 

and supply these each to enough nodes that condition 2 can not be met. (In 

other algorithms, a variation on this requires the trustees to request 

actions that would bring the nodes into a deadlock.) 

Notice that when m = 273. l = T = 173. and also that m> land m > r. 

These relationships suggest that threat 3 is not credible (Le. not likely to occur). 

and that when m 273 threat 2 is not credible. When m < 273, threats 1 and 2 

may each be credible, depending on the difficulty of isolating non-cooperating 

trustees from each other while convincing them to sign tuples relative to that of 

getting m trustees to sign two different tuples with the same cycle number. 

Vault Destruction 

Clearly, if every node is destroyed, the network is destroyed, and its data 

lost, since partials held by nodes are necessary for restarts. The approaches to 

survivable equiptment discussed in Chapter II may be quite effective against 

credible threats to most systems. (Also. in .a network with a relatively small sub-

set of present nodes, a II shell game" could be played with the identity of those 

nodes currently present.) Some applications may not pay the price for adequate 

protection against loss of nodes, however. or loss of data may be intolerable in 

an application. no matter how remote the possibility. A mechanism will be 

described below which allows restoration of a disabled or even a totally des-
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troyed network. 

Chapter III introduced a hierarchy of trustees. The function of the highest 

level trustees, those at level 3, have not been discussed yet. One possible solu-

tion to system survivability against threats related to destruction of sufficient 

nodes to violate conditions 2 or 3 above, is for nodes to form partials of applica-

tion keys, and provide these partials to the trustees at level 3-much as in sin-

gle vault systems. The difference here is that these partials held by trustees at 

level 3 would very likely never be called upon, and hence substantial cost can be 

associated with recovering these keys. For example, the trustees of level 3 for a 

bank's checking account transaction processing system might be the customers 

of the bank, and a majority of two-thirds might be required. 

Message Loss 

Loss of signed messages, which could violate condition 3 above, can be 

prevented by several communication techniques. The following three models of 

communication and their corresponding rules of trustee behavior each ensure 

reliability of the network: 

(1) No message output by a node is lost-this can be achieved in a system 

using broadcast style communication. as mentioned in Chapter II. where 

everything sent is assumed saved by someone; it is the most rhobust, since 

neither a dead vault nor bad trustee can cause loss of information critical 

to reliability. 

(2) Nodes remember and will provide all messages they have output-each 

vault saves all it has signed, up to some limit, and will suply any saved thing 

on request: only dead vaults can cause loss of recently signed things. 

(3) Nodes remember last message they output and will not process next mes-

sage until explicitly told to do so by the trustees -vault has buffer for pre-
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vious thing it has signed; vault can go on to next thing only after trustees 

completes handshake; trustees can destroy reliability (but this is the case 

in any event, as mentioned above). 
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Chapter VIII 

Performance Analysis 

This chapter is intended to show that the communication. time and 

space requirements of the proposed systems are practical. for rea-

sonable system sizes. 

§1 Resource Requirements Summary 

The resource requirements of the proposed systems will be described in 

terms of the number of nodes n and the "average" number of sub-partials w. In 

some systems w=O, but every system satisfies w < n. Table 2 summarizes worst 

case requirements in terms of nand w: 

Space: 

Messages: 

Time: 

o{n+nxw) bits stored by each node. 
O(nxwZ) centrally stored bits. 
o{nZ) messages for any synchronized network action. 
o{n} bits per message. 
2 public key pair creations per node per key chang e period. 
O(n+nxw) cryptographic transformations per node per action. 

Table 2. Worst Case Resource Requirements Summary 
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As was mentioned in Chapter V, a network can function without any sub-

partial keys, in which case w = O. On the other hand, the same chapter men-

tions advantages of sub-partial keys. In the worst case, one sub-partial key is 

required for every node not participating in a key change, plus one less than the 

current quorum to be used to reduce the quorum to 1. Thus, w is never as large 

as n, and really depends on the number of nodes out of communication during a 

key change and on the possible reduction in quorum size and not directly the 

number of nodes in the system n. 

§2 Space Requirements 

Some conservative assumptions atout representation of V-functions 

are used to develop summary and detailed analysis of storage 

required both inside and outside nodes. 

The storage requirements for a node are its Y-functions. Most of these are 

of constant size or size linear in the number of nodes n. Only the sub-partials 

are doubly subscripted, and they may contain at most n x w entries. A detailed 

consideration of storage requirements like that presented in the following sub-

sections will require some assumptions about representation. 

While details of the representation of Y-functions are beyond the scope of 

the present work, it seems reasonable to suggest some simple representations 

for purposes of analysis. Integers will probably require less than a hundred bits, 

while keys and partial keys will require more than a hundred bits. One possible 

scheme for representing node ids is to represent each as an element of some 

practically inexhaustible set of values, much as "capabilities" might be encoded 

as sixty-four bit numbers in some systems [Chaum & Fabry 78]. Only one node 

id is needed for every current node and trustee; a single ordered list of the node 

id corresponding to each might be maintained. The node ids could be used up in 

some order. say lexicographic order, and the most recently used id would be 
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maintained. Thus, if an id was less than or eaqual to the most recent and not on 

the list then it would be in USED_NODE_IDS. The various sets of node ids might 

be implemented as bit maps, the way sets are intended to be implemented in 

the Pascal language, possibly using the same ordering as in the list of current 

ids. Tables indexed by node ids might similarly be represented as linear arrays 

using the same ordering. 

Storage Inside Nodes 

Based on these loose assumptions about representation, it is easy to order 

most of the various sorts of V-functions in terms of storage requirements. Many 

of the V-functions hold data of fixed size such as a single node id, integer, seed, 

or key. A more important class of V-functions holds sets of node ids, which by 

assumption above may be represented as n bits. Next are the tables indexed by 

type node id which hold integers and then those holding keys and partial keys, 

all of which require n representations of each corresponding type, and thus O{n) 

storage. 

Another class of V-function includes those of seemingly unbounded size. 

But actually, these V-functions hold historical information which becomes 

obsolete and is never accessed after a reasonable amount of time and possibly 

some garbage collection. For example, ALLOWN_NODE_PUBLICS and 

PROPOSALS_PENDING hold information used to verify pending proposals, but 

once the proposals are acted on or CANCELPROPOSALed this information is no 

longer needed. Similarly, QUORUMS records the quorum in effect for previous 

key change periods (as well as the current and next change period). Once there 

are no more nodes in use whose last participation was during a particular old 

key change period, the information retained about that period is no longer 

needed. The set of used node ids which is maintained to avoid possible problems 

resulting from multiple nodes with the same id can safely be purged of entries 
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so old that they do not appear in pending proposals or in the current key change 

period, since nodes are effectively identified by their public keys. Such purging 

or even the storage of used node ids would not be required in a practical system 

of finite lifespan which uses the capability style representation of node ids men-

tioned above, since new node ids might simply be selected in sequence. 

One V-function which is in a class by itself is CERTIFICATION. It is defined 

as a table indexed by node id which contains sets of node ids. Using the simple 

representation mentioned above, this would require n 2 bits. Because of the way 

this V-function is used, however, it need only require O{n) storage. The reason 

for this is that the only two kinds of access required are changing the whole set 

of node ids associated with a particular node id, and checking that the set of 

node ids recorded for a particular node id matches some given set. Thus, a suit-

able representation would entail merely storing a compression of the bit map 

representing the set of nodes corresponding to a particular node id. In an appli-

cation where the nodes are equally trustworthy, the use of CERTIFICATION may 

be limited to determining if a node is allowed to be applied or if it was intended 

as a replacement node and in this case CERTIFICATION would only require one 

or two bits per node id. 

The final class of V-function is occupied by SUB-PARTIALS and 

NEW_SUB-PARTIALS. These are doubly subscripted tables of partial keys. The 

first subscript is a node id and the second is an integer whose maximum value is 

found in SUB-PARTIALS_REMAINING or NEW_SUB-PARTIALS_REMAINING. 

As was mentioned in earlier, w may be 0, and in that case these two V-functions 

would require no storage. On the other hand, w may be nearly as large as n in 

the worst case, and thus these V-functions may require O{wxn} storage. 
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Storage Outside Nodes 

Extenders are the only objects which do not naturally have a particular 

node which should store them. An extender does not need to be stored by the 

node which created it because it is intended to be used when the creator is un-

available. Thus it seems that extenders should either be duplicated at all nodes 

except the creator or stored in some reliable storage system outside the nodes, 

perhaps by trustees. The number of extenders which must be maintained for 

each node j is z = SUB-PARTIALS_REMAININGfj], but before a change keys an 

additional NEW_SUB-PARTIALS_REMAININGfj] may be required. The "aver-

age" value of z is W, and hence the maximum number of extenders for a node is 

2Xw. An extender contains «z-1)2)72 partial keys. The largest extenders get 

used up first. 

§3 Communication Requirements 

Summarizes and gives details of the number and size of messages 

required by synchronized D-functions and their associated un-

synchronized functions. 

The number of messages sent during a key change for a a network with n 

nodes is at worst O(n2 ) , since every node may potentially issue a partial key to 

and receive a partial key from every other node. This is the only synchronized 

action which requires that more than one node send a message to more than 

one other node. (Other synchronized actions may use as many messages, as dis-

cussed below, but such use is not necessary.) The length of these messages is 

linear in the number of sub-partials W which is established for each node by the 

previous create keys. As mentioned above, the messages lengths are at worst 

O(n). A detailed analysis of the message requirements of all the D-funclions fol-

lows. 
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The following synchronized G-functions require only the phase 1 and phase 2 

messages: PROPOSE, CANCEL-PROPOSAL, APPLY, CERTIFY, REMOVE_NODES, 

and SET-MINIMA. One way to accomplish this which is economical in terms of 

messages entails passing a message around through a MAJORITY of nodes which 

each add a signature, and then passing the multiply signed message around 

again to every node. When nodes or channels go down, some mechanism must 

allow messages to take an alternative route. Naturally some non-security 

relevant mechanism would keep track of the identity and order of signatories, as 

mentioned in Chapter V, to facilitate signature checking. The opposite extreme, 

which is extravagant in terms of message requirements, entails each node sign-

ing a message and broadcasting the signed mp-ssage to every other node. In this 

case, node or channel failures within the constraints of the assumptions do not 

require any special action. Of course various intermediate combinations of the 

two approaches could be used. The choice of mechanism may depend on a 

variety of factors, such as communication cost, the speed of the communication 

mechanism, availability of reliable mechanism to supervise the signature collec-

tion process (see section two of the previous chapter). A detailed consideration 

of the alternatives is beyond the scope of this work and may be an area for 

further research. 

The ANNOUNCEMENT_DEFINITION of the CHANGE_PRESENT G-function 

includes the output of a PARTIALS_RECEIVED G-function call that was per-

formed by every node participating in the CHANGE_PRESENT. However, such 

outputs need be requested at most w+ 1 times for each key change period. One 

of these times being the PARTIALS_RECEIVED output used in the 

CHANGE_KEYS and produced by p = PRESENT nodes, which is valid for every 

node participating in the key change. In the worst case, the remaining w nodes 

are each the subject of a PARTICIPATE and are then individually made present 

by successive calls to CHANGE_PRESENT. This case requires p rounds of at 
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most n present nodes. 

The constant-sized output of the RESTART resulting from phase II must be 

collected from a QUORUM nodes and supplied to the REPLACING node. 

During a PARTICIPATE, a majority of present nodes must exchange mes-

sages with the subject node. The messages sent to the subject node, from the 

output of the PARTICIPATE, each include a sub-partial key for every node who 

last participated in a key change period which followed the last key change par-

ticipated in by the subject node, but which preceded the current key change 

period. Partial keys must also be included in these messages from those nodes 

participating in the current key change that have not performed an 

ISSUE_NEW_PARTIALS with the subject of the PARTICIPATE. These same 

nodes must supply extenders to the subject of the PARTICIPATE. Of course the 

number of sub-partials supplied in a message from one node to the subject of 

the PARTICIPATE or the number of sub-partial keys contained in an extender 

can never be greater than n. The messages contained in the output of the PAR-

TICIPATE performed by the subject node must each be transmitted to the parti-

cipant node for which they are intended. Thus, p fixed-sized messages must be 

delivered. 

During a CREATE_KEYS each node issues a set of z-l extenders, where z is 

the number of sub-partials requested for the node. An extender contains 

«z-1)2)_;-2 partial keys. The other output generated by each node in a 

CREATE_KEYS just contains the fixed-sized new keys for the node. These new 

keys can be joined together and used in a round of calls to 

RECEIVE_NEW_PARTIALS. Each node participating in such a round will issue a 

new partial and a set of at most w sub-partials to every other node supplying 

new keys for the round. Before a call to CHANGE_KEYS can occur, every node 

that will participate in the key change must supply every other node that will 

participate a partial key and possibly some sub-partial keys. Thus, 
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\ 1 

nx(n-l} = O{n2} messages are required, and the messages are of size O{w}. This 

entails 0(p2) messages of length w, and which exceeds all other message 

requirements. 

Before a CHANGE_KEYS can be performed, a round of 

RECElVE_NEW_PARTIALS, which entails a fixed-sized message, must be accom-

plished which includes every node that will become participated. 

§4 Time Requirements 

Summary and detailed analysis of computational requirements for 

the various D-functions are presented 

The most computationally significant tasks performed by nodes are the 

cryptographic functions of signing, checking signatures, sealing, unsealing, 

forming keys. and forming partial keys. 

Key Creation 

Public and private keys are created only during the CREATE_KEYS 0-

function. Two public key/private key pairs are created by each node for the new 

key change period. In addition. Chapter V indicates that z other pairs of keys 

may be created for protecting extenders, however, these keys could be conven-

tional keys, and their creation would presumably require little effort. 

Cryptographic transformation 

Multiple encryption of messages is limited to a fixed depth, except for the 

signatured templates, of which their are two kinds: {1} every synchronized 0-

function requires that at least a MAJORITY of nodes, and possibly as many as n 

nodes, each form a digital signature, and that every node eventuaUy check at 

least a MAJORITY of the signatures; and (2) the output of PARTIALS_RECEIVED 
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may also contain signatures made by a at most n nodes. Since signatures need 

not be chained over an entire message, but need only be made on a compression 

of the message, these operations require at worst o{n} cryptographic transfor-

mations. 

The remaining use of cryptographic transformations is for forming mes-

sages and decrypting messages. Since the remaining multiple encryption of 

messages is of fixed-depth, and each node receives at worst n messages per 0-

function each of length at most w, or a fixed fixed number of messages of length 

O(n), or o{n) fixed-sized messages, the maximum number of cryptographic 

transformations performed by a node during a single o-function is O(n+nxw). 
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Chapter IX 

Initial Certification 

Solutions are presentcd to the problem of building apparatus and 

preparing it for tamper-safcd operation, :while maintajning the trust 

of mutually suspicious groups. 

The certifiers of a vault must be convinced of two things: (1) that the plan 

for the vault has the desired properties, and (2) that the vault conforms to the 

plan. The first is discussed in Chapter II, under the subsections dealing with pro-

tection and verification; the second is the topic of the present chapter. Since 

much of the plan is information that the vault is required to use (e.g. programs, 

trustees' public keys, and initial values of V-functions) it need only be signed by 

certified mechanism within an otherwise certified vault. 

There are a variety of approaches to the remainder of the second 

problem-determining whether a physical device conforms to the plan-each 

yielding some degree of trust for a particular technology. Since difierent tech-

nologies may be used in a particular system (e.g. printed circuit boards, and 

integrated circuits), and different parts may be constructed by different groups, 

a number of different techniques may be combined for a particular system. 
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Of course, the certifiers' jobs are not completed until they have witnessed 

the securing of the vault and the display of its public keys. 

§ 1 Multiple Observer Construction 

Two approaches to construction are presented: (1) mutual observa-

tion and inspection, and (2) random public selection of component 

parts. 

An obvious approach to certifying a device is simply to inspect it. (This 

might be adequate to determine the interconnections provided by a printed cir-

cuit board, e.g.) 

Higher degrees of certainty and some technologies may require that the 

manufacturing process be observed as well. If a device is publicly chosen at ran-

dom from a large collection of identical devices (integrated circuits, e.g.), then 

interested parties could choose additional devices and destructively test them. 

The foregoing suggests a scenario in which a publically announced event is 

used to create a vault. The event may be held at a warehouse where many chips 

of the desired kind(s} are stored. Each chip is given a serial number by some 

means, such as by its position in the storage arrangement. First. a printed cir-

cuit board is fabricated, possibly on a clear substrate. while any interested 

attendee may observe the manufacturig process and possibly record photo-

graphically, for latter inspection, the interconnection pattern provided by the 

board. Next, a random number is arrived at by some publically verifiable tech-

nique, such as throwing dice or some other technique used in gaming. Then the 

chip identified by the raridom number is carefully removed from storage and 

placed on the board. This process may be repeated for each chip required. 

Finally, the attendees watch as the chips are wave-soldered onto the board, the 

board is placed in the vault, and the vault is closed up. 
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§2 Multiple Constructor Construction 

Each group can supply modules in such a way that the whole system 

is guaranteed to work propcrly, or not at all, if the modules suplied 

by a particular group work properly. 

There is an alternative approach to construction in which each certifying 

organization can produce a subset of the modules which comprise a system. 

Modules can be combined in such a way that if the modules supplied by anyone 

organization conform to the plan, the whole system will behave as if each 

module conformed to the plan. This approach differs from the previous tech-

niques in that a certifier can render the vault inoperative by providing a mali-

cious module. 

For example, one way to combine a set of random number generator 

modules, each supplied by a different certifier, is to add their outputs bit-wise 

modulo two. {More sophisticated approaches have been suggested by Key [ao].} 

Redundant isolation modules for the power and input/output lines, which pass 

through the vault's shielding, would be arranged serially within the vault. Multi-

ple tamper detecting modules within the vault, possibly of different types, would 

make for a more secure vault. Reliability, in the form of immunity to false 

alarms, can be traded for security by a mechanism that requires more than one 

alarm be tripped before the memory content is erased. 

Each member of a set of redundant processor modules must have access to 

all of the vault's inputs. If the output of one particular processor module is used 

as the output for the entire vault, the other processors must be able to compare 

their output to its output, and have time to stop the output on its way through 

the isolation devices, before it leaves the vault's shielding. If, instead, the out-

puts of the processors were routed through a voting device, the system could be 

made more reliable at the expense of the security lost by allowing one or more 

processors to be ignored. 
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If memory devices which will hold keys and other important information are 

supplied by mutually suspicious certifiers, each certifier may have to be con-

cerned that some device supplied by another certifier will improperly retain 

information when tamper-responding or fail-secure mechanisms call for its des-

truction. This problem can be solved if thermal pyrotechnic devices, such as 

thermite, are placed within the vault. Each certifier might then supply a pyro-

technic module. 

When the modules are installed in the vault, it should be possible to certify 

their interconnections by inspection. 
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Chapter X 

Future Work, Summary & Implications 

Some of the work remaining is pointed out. a brief summary of the 

present work is provided and its implications are touched on. 

Future Work 

A critical step in the ultimate acceptance of systems like those proposed 

here is their transition from the paper design stage into the simulation and pro-

totyping stages. Such a step would give the algorithms an opportunity for 

further evolution. The substantial effort required for verification of the security 

and reliability properties of the algorithms could then be applied to a version of 

the algorithms more likely to actually be used. 

A potentially significant step in accelerating the ultimate acceptance and 

use of the proposed systems is their initial use in a real application. Thus. it 

may be important if a particularly well suited application exists which can take 

advantage of the opportunities provided by early and first time adoption of these 

systems and bear the higher initial overhead associated with such adoption. 
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" 

Summary & Implications 

A feasibility argument has been presented for a technique for constructing 

and maintaining a colle ction of computers in such a way that mutually suspi-

cious groups may come to trust it. To the extent that such systems prove prac-

tical. those providing information to. or relying on the output of a computer sys-

tem. will also insist on being able to trust it. 
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