
Computer Systems Established, Maintained and Trusted
by Mutually Suspicious Groups

By

David Lee Chaum
A.B. (University of California, San Diego) 1977

M.S. (University of California) 1979

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved: _q., (fill.
Chairman - Date

c. (/ t/ "p', ", -. 0/ ';<.-1'. I.?·.V?_

... f . or H"j<

;

Computer Systems

Established, Maintained, and Trusted

by Mutually Suspicious Grall pS

@ 1982 by David L. Chaum

Abstract

A nwnber of organizations who do not trust one another can build and

maintain a highly-secured computer system that they can all trust (if they can

agree on a workable design). A variety of examples from both the public and

private sector illustrale the need for these systems. Cryptographic techniques

make such systems practical. by allowing stored and communicated data to be

protected while only a small mechanism, called a vault, need be physically

secured. Once a vault has been inspected and sealed, any attempt to open it will

cause it to destroy its own information content, rendering the attack useless. A

decision by a group of trustees can allow such a vault-or even a physically des-

troyed vault-to be re-established safely.

Networks of vaults can allow reliable operation even in the face of communi-

cation channel and vault failures. Networks also have several security advan-

tages over single vault systems: (1) information that is no longer needed can be

permanently destroyed, (2) comprehensive records of security relevant actions

by the trustees can be maintained, and (3) abuse of the trustees' power requires

advance notice. Algorithms which implement such a network are presented in a

specially adapted formal specification language; examples of the algorithms' use

are given; analysis of communication, memory and time requirements are

presented; and security and reliability properties are proved.

Each of some mutually suspicious groups can supply part of a vault, in such

a way that each group need only trust its part in order to be able to trust the

entire vault. Another approach to construction is based on public selection of a

system's component parts at random from a large store of equivalent parts. The

practicality and ramifications of the ideas presented are also considered.

iv

0
I»

S

>-3

::l
0

::l
Po

..... C1I

Po

tj

I» Po

iii

Table of Contents

I Introduction ...•......... 1

§ 1 Problem Statement & Motivation 1

§2 Overview & Chapter Summaries , 3

§3 What's So New About All This? .. 4

II Survey of the Literature 6

§1 Cryptographic Algorithms 6

§2 Applications of Cryptography ... 10

§3 Partial Key Techniques 14

§4 Computer Security 15

§5 Physical Security 19

§6 Survivability .. . 20

§7 Related Work 22

III Assumptions 26

§ 1 Cryptologic 26

§2 Partial Key Techniques 28

§3 Verification & Certification , 29

§4 Physical Security & Survivability 29

§5 Organizational Structure 30

IV Single Vault Systems 32

§1 Checkpoints & Restarts 32

§2 Limitations of Single Vault Systems 34

V Multiple Vault Systems ... 37

§1 Introduction to Algorithms ... 37

§2 Simple Types, Primitives & Constants 40

§3 Secret Y-functions 46

§4 Non-Secret Y-functions 50

iv

§5 Templates. Template Types. & Primitives 57

§6 Synchronized D-functions ... 61

§7 Un-Synchronized D-functions B2

VI Operational Example .. 90

§1 Adding in Three Nodes ; 91

§2 Changing Keys & Setting Minima .. 97

VII Proofs 100

§1 Security .. 100

§2 Reliability ... 105

VIII Performance Analysis ... 111

§1 Resource Requirements Summary 111

§2 Space Requirements 112

§3 Communication Requirements 115

§4 Time Requirements .. l1B

IX Initial Certification 120

§1 Multiple Observer Construction .. 121

§2 Multiple Constructor Construction 121

X Future Work, Summary & Implications .. 124

chaum:Sat. May 22 13:24:52 126
drawfng

Acknowledgements

The time spent discussing the material in this dissertation with Bernard

Mon-Reyaud was extremely enjoyable, and lead to the development of an excel-

lent friendship. Similarly, the time spent with Eugene Lawler, resulting from his

participation in the thesis process was also quite enjoyable, and included many

pleasant sessions during which, among other things, I received his counsel on

the academic life in general and also on quite a range of particulars. Carlo

Se'quin and I had many stimulating discussions, mostly before and as a result of

my masters thesis work, though he did contribute to the present work in a

variety of ways, including participation in the qualifying exam. Bob Fabry and I

worked together for well over a year, and his support during that ti,me excep-

tional. Whit Diffie has contributed to the present work through numerous

lengthy and extremely valuable discussions.

A few of my peers at Berkeley also contributed in no small way-interacting

with them fulfilled ones expectations about how such relationships make grad-

school: David Chin, Jim Demmel, Robert Hyrele, Peter Kessler, Keith Sklower,

and Tim Winkler. This work started one summer, during which I spent a great

deal of time with Doug Cooper. He helped me overcome a fear of writing.

Manuel Blum was also around a lot that summer, and he and I talked. He main-

tained that one should never try to predict the eiIects of ones actions on

society. It was the rejection of this principle which lead to the present work.

iv

Chapter I

Introduction

§1 Problem Statement & Motivation

This section defines the increasingly important problem of providing

computer systems that can be trusted by groups who don't neces-

sarily trust one another. Example applications motivate the need for

solutions and illustrate the nature of the solutions proposed.

Concern over the trustworthiness of computer systems is growing as the

use of computers becomes more pervasive. It is not enough that the organiza-

tion maintaining a computer system trusts it; many individuals and organiza-

tions may need to trust a particular computer system.

For example. consider a computer that maintains the checking account bal-

ances of a bank. The bank is concerned, among other things, about possible loss

of balance records. The Federal Reserve Bank must know the total of these bal-

ances, to ensure that the legally required percentage of the balances is on depo-

sit with it. The Internal Revenue Service requires the ability to check the bal-

ance of an individual's account. Individuals, or a consumer organization acting

on tbeir behalf, may wish to ensure that disclosures are made known to those

1

involved, and that inquiries can never be made on information that is more than

a few years old.

There are many other similar applications of computers which involve

private sector records related to consumers, such as those arising from credit,

insurance, health care, and employment relationships. Public sector record

keeping, in such areas as tax, social security, education, and military service

are also quite similar.

Another class of applications involves information about public or private

sector organizations as opposed to information about individuals. For example,

various international agencies, such as the International Atomic Energy Agency,

must be able to ensure the secrecy of the information they receive from their

member nations. Numerous industry organizations develop statistics from

confidential information submitted to them by their member corporations.

Brokers and other middlemen in the mailing list industry must be able to a

ensure the confidentiality of the lists they receive from a variety of list compil-

ing organizations for purposes of removal of duplications or various kinds of

prescreening.

AU of these applications involve one group who owns or controls the com-

puter system, and who is particularly concerned with reliably maintaining the

operation of the system and with ensuring the survival of the data maintained by

the system-they will be called the "trustees." A second group or set of groups

are primarily concerned about the confidentiality of the data which relates to

them that is available to the system. There may be a third group or set of

groups, which may overlap with the first and second groups, who are concerned

about the correctness of the operation of the system.

Of course, many applications of computer systems used solely within large

organizations have a similar flavor, because such organizations are often com-

posed of groups or individuals with conflicting interests.

2

§2 Overview & Chapter Summaries

The basic idea of the proposed systems is introduced and the organi-

zation of the thesis is presented as a guide to the reader.

This thesis offers a system design and feasibility argument for computer

systems which can be established, maintained and trusted by mutually suspi-

cious groups. Such systems can be used to meet the requirements of applica-

tions like those mentioned in the previous section, if a workable design can be

agreed on by the participants. The cryptographic techniques which form the

basis of the approach are introduced in the next chapter, Chapter II. They make

such systems practical by the mechanism upon which reliability and

security depend. This mechanism-the processor and its high-speed store-will

be called a vault. Vaults will be constructed in a way that can be verified by all

the participants, or by any interested party, and then they will be physically

secured, such as by being shielded within a small safe-like container.

In addition to introducing the cryptographic techniques, and presenting the

relationship of the present work to the literature, Chapter II also surveys the

varied literature which lends support to the practicality of the ideas presented:

applications of cryptography; design and verification of security properties;

securing apparatus from tampering and probing; and survivability of equipment,

data and communication. Chapter III abstracts from the techniques of Chapter

II the assumptions which form the basis of the proofs contained in a later

chapter. At the same time, Chapter II also presents some important underlying

assumptions which, although they do not enter directly into the proofs, influence

the nature of the proposed systems. Chapter IV introduces a system based on a

single vault. This serves the dual purpose of introducing a number of concepts

used in the proposed multiple vault systems, and pointing out a number of

shortcomings of single vault systems which are solved by the systems to be pro-

posed.

3

The algorithms which define the operation of the multiple vault systems to

be proposed are presented in Chapter V, using a specially adapted formal

specification language. Then Chapter VI provides an example of the use of the

algorithms, which demonstrates how a multiple vault system can be established.

Proofs of various security and reliability properties are presented in Chapter VII,

which make use of the assumptions of Chapter III. Analysis of the performance

issues of space, communication, and time requirements of systems based on the

algorithms of Chapter V is presented in Chapter VIII. Chapter IX presents tech-

niques for constructing and placing into operation a secured vault, while main-

taining the trust of potentially mutually suspicious groups. The final chapter,

Chapter X, briefly considers work remaining and the implications of the present

work.

Before delving into the supporting literature, however, it is important to

indicate some of the unique contributions of the present work.

§3 What's So New About All This?

Suggested are the novelty and advantages of the present work over

other work known to the author.

This thesis addresses the problem of establishing and maintaining com-

puter systems that can be trusted by those who don't necessarily trust one

another. This particular formulation of the problem is believed to be a contribu-

tion in its own right. In addition, the present work combines an unusually wide

diversity of security technologies. The techniques presented for allowing con-

struction of apparatus which can be trusted by mutually suspicious groups also

appear to be new.

The detailed algorithms presented are the result of several major itera-

tions, and are believed to take into account most of the important issues. The

use of cryptography is central to many of the algorithms and is quite a bit more

4

complex than that reported elsewhere. This motivated substantial extension of

a previously defined specification language in order to integrate a variety of

cryptographic techniques into the type-checking and parameter-passing

mechanisms in a convenient way. Also, a new general problem for computer

network security, "the covert partitioning problem," is introduced along with

algorithms which provide a solution and proofs of their correctness.

5

Chapter II

Survey of the Literature

Considered is some of the literature which lends support to the feasi-

bility argument of the present work. and some related work.

This thesis puts forward a proposal for a new kind of highly secure com-

puter system. The technologies upon which these systems must be based are

quite diverse and cut across some traditional boundaries. Nevertheless, an

attempt will be made to indicate the feasibility of the proposed systems by

pointing to relevant surveys or directly into the literature.

§1 Cryptographic Algorithms

The various types of cryptographic algorithms used in the present

work are discussed with reference to the relevant literature.

Information is encrypted to allow it to pass safely through a potentially hos-

tile environment.

6

Conventional Cryptography

Secrecy. Traditionally. concern has centered on providing the

confidentiality of message content. Consequently. cryptographic techniques

were devised to make it very difficult (in some cases impossible) to transform

encrypted information back to its unencrypted form without possession of a

secret piece of information. called a key. Two correspondents who were the sole

possessors of a key could use it to maintain the secrecy of the message content

of their correspondences. Note that the cryptographic algorithms themselves

are assumed to be public knowledge; only the key need be kept secret.

Ultimately. all cryptographic algorithms can be thought of as transforming

symbols into other symbols. With a Captain Midnight decoder badge. the badge

is the key. and letters are mapped into other letters. The un-breakable Vernam

cipher maps only single bits into other bits. by adding each bit modulo two with

a different key bit [Kahn 67]. On the other extreme. block cryptographic algo-

rithms map large strings of bits. called blocks. into other blocks. The National

Data Encryption Standard. for example. maps 64 bit blocks into 64 bit blocks.

using a 56 bit key [NBS 77]. Many blocks can be "chained" together during

encryption. effectively forming a single large block [Feistel 70].

Authentication. The present work assumes the use of block schemes. like

the Data Encryption Standard. which make it very difficult to modify part of an

encrypted block of information without causing drastic changes to the entire

decrypted block. A large serial number can be appended to a block before

encryption; its presence after decryption provides authentica.tion of the block

as a valid block that has not been altered. In such systems. it becomes

extremely difficult for someone without a key to create a block that will contain

a desired serial number when it is decrypted by a keyholder. Two communi-

cants with a common key can converse using encrypted blocks of data. checking

7

the serial number of each received block to ensure that it has arrived in the

proper sequence, and to ensure that it has not been altered [Feistel, Notz and

Smith 75].

Pu blie Key Cryptography

The cryptographic techniques considered so far have the unfortunate pro-

perty that a common key must be distributed to the communicants, while it is

kept secret from everyone else. In contrast, consider a fundamentally different

sort of cryptographic algorithm independently proposed by Diffie and Hellman

[76], and Merkle [78]. To use these algorithms, each participant creates a

private key, that is never revealed to anyone else. Only a suitably related public

key is made known to everyone. Here we will be concerned with public key cryp-

tographic algorithms (like that of Rivest, Shamir and Adleman [78]) where the

two keys are inverses of one another, in the sense that a block encrypted with

one can be decrypted only with the other.

Sealing. Public key cryptography can be used to provide the secrecy of

message content. A confidential message can safely be sent if it is first sealo.d,

an operation which includes encryption with the recipient's public key. Only the

intended recipient can decrypt the received message-because the correspond-

ing private key must be used to decrypt it. A large random number is joined to

the message during sealing, to counter two potential threats: (1) if the same

message is sent more than once, such a message will be revealed as such to an

eavesdropper; (2) an eavesdropper's guess of the message could be verified by

encrypting the guess with the public key and then checking if the resulting bits

are identical to the sealed message.

Signing. Authentication in public key cryptosystems is much more useful

than that provided by conventional cryptography, because only a public key is

8

needed to authenticate a message, and hence anyone, not just the holder of a

secret key. can check the authenticity of messages. Someone signs a message

by encrypting it with their own private key. If a serial number of some agreed

upon structure, such as all zeros for example. is joined to the message during

signing, then its presence after decryption with the corresponding public key

authenticates the signature.

Com pression Functions

The so called "one-way" functions were introduced by Purdy [74] as part of

the now familiar method of protecting passwords stored in computer systems.

The one-way function and the image of all the passwords under the function are

publicly readable, but they must be protected from alteration. Thus. the ideal

one-way function is easily computed, but the inverse is computationally infeasi-

ble.

For the present work, a compression function will be a special kind of one-

way function which maps an arbitrarily large domain into a fixed range, but

which is practically impossible to invert. Such functions are quite handy since

they in effect allow a relatively small number of signed bits to authenticate a

large number of bits. Similar concepts have been described by various authors.

(see Feistel [70] or Needham and Schroeder [78] for example.)

Key Generation

The automated generation of true physical random numbers has received

some attention in the literature (see Knuth [7] for example). Sampling the noise

generated by specially fabricated noise diodes seems to be an excellent source

of raw bits (thermal noise and radioactive decay also seem good, but more

cumbersome), which must then be corrected for bias in the detector.

9

Techniques for perfect correction of independent events with a fixed-bias detec-

tor are widely known. (Notice. however. that detector drift and physicl depen-

dencies in the source contribute to less than perfectly independent raw bits.)

The simplest such technique takes as input successive pairs of independent bits

and outputs say a 1 bit for pairs of the form 1 O. outputs a 0 bit for pairs of the

form 0 1. and produces no output for the other possible pairs 1 1 and 0 0 [Von

Neuman 51: Gill 72]. It is also possible to combine many random numbers of

some less than optimal entropy to produce a single number of increased

entropy. such as by adding many numbers bit-wise modulo-two.

While details are beyond the scope of the present work. it is important to

notice that many cryptographic algorithms may be quite weak for some choices

of key. Care must be taken to determine if a candidate key is such a weak key

and to randomly create another candidate in such a case.

§2 Applications of Cryptography

Discusscd are some of the rclatively few publications which assume

good cryptographic algorithms and go on to consider applications.

Many kinds of security rely on the secrecy of their techniques. In contrast.

much of the open literature on cryptography owes its existence to the premise

that such secrecy may not be necessary or even desirable with cryptographic

techniques. Shannon [49] assumes that the cryptographic algorithm is known to

the "enemy" and only the key is secret. KerckhofIs [1883] made a similar

assumption. Baran [64] provides convincing arguments for making public the

details of what he calls "cryptographic design" which includes the "hardware

details".

There has been much work that considers the use of encryption for com-

munications security and data security. The remainder of this section mentions

some of the more relevant work in these areas. Work with a heavy emphasis on

10

the cryptographic algorithms themselves has been omitted. however. since this

thesis is not concerned with particular cryptographic algorithms.

Communications security

Protocols that provide secrecy and authentication of communication

between two devices using conventional cryptography are relatively straightfor-

ward and have been touched on by many authors. among them are Feistel, Notz.

and Smith [75] and Kent [76]. Public key protocols for this kind of communica-

tion are similar to those based on conventional cryptography [Needham and

Schroeder 78].

Key distribution. With conventional cryptography. the channel used to ori-

ginally transmit the key from one participant to the other must provide both

secrecy and authentication. Also. O(n2} keys can be required when n partici-

pants wish to converse amongst themselves using conventional cryptography.

Heinrich and Kaufman [76] and Branstad [75] described an approach to distri-

buting these keys that uses a central trusted device. (The techniques of the

present work would be ideal if such an approach were to be used in an applica-

tion with mutually suspicious participants.) Needham and Schroeder [78]

describe both a centralized scheme and one in which the participants each use a

trusted local device. all local devices having cryptographically secured commun-

ication amongst themselves. Diffie and Hellman [76] describe a scheme (devised

with the collaboration of Lamport) which can only be corrupted by compromise

of all of some fixed set of trusted devices.

The key distribution problem was at least part of the impetus for the two

independent proposals of public key cryptography (Merkel [78] and Diffie and

Hellman [76]). Only CXn) keys are required by systems of the kind proposed by

Difiie and Hellman. The key distribution problem is further simplified because

11

neither kind of system requires keys to be kept secret during distribution-only

their authenticity must be ensured.

Tra.ffic Analysis. The problem of keeping confidential who converses with

whom, when and how much they converse. will become increasingly important

with the growth of electronic mail. The problem of keeping an adversary from

learning anything about the timing. amount or routing of messages in a com-

munication system has been called the "traffic analysis problem. II Baran [64]

has solved the traffic analysis problem for networks using conventional cryptog-

raphy. but his approach requires each participant to trust a common authority.

In contrast. a system based on public key cryptography [Chaum 81]. can be

compromised only by subversion or conspiracy of all of a set of authorities. In

the limiting case, each participant can be an authority.

The last approach allows one correspondent to remain anonymous to a

second, while allowing the second to respond via an untraceable return address.

This permits rosters of untraceable digital pseudonyms to be formed from

selected applications. Applicants retain the exclusive ability to make digital sig-

natures corresponding to their pseUdonyms. Elections in which any interested

party can verify that the ballots have been properly counted are possible if

anonymously mailed ballots are signed with pseUdonyms from a roster of

registered voters. Another use allows an individual to correspond with a record-

keeping organization under a unique pseudonym which appears in a roster of

acceptable clients.

Data Security

Conventional cryptography has received some consideration as a technique I

for protecting stored information. The use of encryption to protect objects

within operating systems. first suggested by Peterson and Turn [67]. suffers

12

from the problem of key management. One might argue that whatever tech-

niques were applied to protect the keys. might have been applied to the data

itself. thus eliminating the need for encryption. But. advantage can be taken of

the small. fixed-size of the keys.

The use of cryptographic techniques to protect data stored in a potentially

hostile environment are relevant to the present work. There are three impor-

tant considerations for protecting stored data, each corresponding to one of the

issues of secrecy. authentication, and traffic analysis in the context of communi-

cation. First, if the same data is stored more than once under the same key.

then some non-repeating data, such as the random serial number used in seal-

ing, must be included in the data lest the repetition be revealed. Second, it may

not be sufIicient to be able to authenticate the memory location associated with

a page received from storage if data has been stored at that location more than

once; a solution to this, the "most recentness" problem, must be provided so

that the page can be authenticated as the last copy written. (Solutions to this

problem which also solve the first problem are presented in the work of Bayer

and Metzger [76] mentioned below.) Finally. the pattern of read and write

accesses must be considered as a possible source of information to an adver-

sary. A most general solution to this last problem. which makes no assumptions

about the application program, might be to alternately read every stored loca-

tion ever written and then to perform a fixed number of writes. Clearly this is

not an attractive solution. and much more reasonable solutions, possibly includ-

ing the introduction of some bogus requests. can be developed by careful design

of the application program.

An interesting technique has been developed for encrypting information

which is divided into pages. A different key is used to encrypt each page. The

key used for a particular page is produced by encrypting the address of the

page using a master key. Mapped addresses (so that addresses can be changed

13

for new versions of a page) and physical addresses are considered by Bayer and

Metzger [76]. Content addresses have been dealt with by Gudes, Koch, and Stabl

[70]; and by Flynn and Campasano [78].

Some simple systems have actually been built that encrypt data at a secure

site before transmitting it to an un-secured data base management system

[Notz and Smith 72; Carson, Summers and Welch 77]. The terminals or their

users are presumably the only holders of the keys so that only they can access

the data.

§3 Partial Key Techniques

Various solutions to the problem of dividing a key, or other secret

information, between individuals or other entities are presented.

Feistel [70] describes schemes in which a cryptographic key is divided into

n parts, each part is given to a different person, and the original key can be re-

created by combining all n parts. These schemes use random bits for each part

except the last, which is chosen so that the desired key is the bit-wise modulo-

two sum of this last part and the rest of the parts. A disadvantage of such

schemes is that if just one part is lost, then the original key can not be re-

created.

The technical report on which this thesis is based (Chaum [79]) introduced

a scheme for dividing a key into parts, called partial keys, in which some

selected subsets of the partial keys are sufficient to re-create the original key.

The approach used was based on multiple encryption. Independently, and at

about the same time, Blakley [79] and Shamir [79] published more elegant

schemes which do not have the inherent flexibility of the multiple encryption

schemes, but can use less space and run faster for large n when the required

sets are all possible sets with cardinality greater than some fixed number.

These techniques are unbreakable as is the Vernam cipher mentioned earlier,

14

and the Vernam cipher has even been called a degenerate case of these tech-

niques [Blakley 80]. Further work by Azmuth and Bloom [80] includes means for

determining which if any partial keys submitted for a re-creation are bogus.

§4 Computer Security

The field of computer security is divided into four areas, and each is

dealt with in a separate subsection.

Computer security is the topic of several journals, several annual confer-

ences, dozens of books, thousands of articles in the technical literature, and

many more pieces in the popular press. It is far beyond the scope of the

present work to try to survey this vast literature.

For the purposes of this section, the field of computer security is divided

into four broad groups of concerns:

(1) issues related to personnel and their access to facilities;

(2) design of desired security properties;

(3) verification of implementation of the desired security properties;

(4) physical security of equipment against probing and modification.

Survivability issues are covered in the next section.

Personnel

Discussion of personnel issues are liberally sprinkled throughout the com-

puter security literature, particularly that aimed at the practitioner. From the

technical point of view, the major issues with respect to personnel are how to

reduce the exposure to personnel, and then how to force conspiracies of persons

for what exposure remains. Essentially two ways to force conspiracy are used.

The most desirable mechanisms are those which can force equally knowledge-

15

able persons to conspire. For example. the so called "two man rule." used for

control of nuclear weapons. may require that two keys located at substantial dis-

tance from one another be turned simultaneously. A somewhat less appealing

but much more widely used approach is to attempt to limit the knowledge of

individuals to such narrow aspects of a system that they must conspire with oth-

ers in order to have the knowledge and skills required to compromise the sys-

tem (see [FDIC 77] for example). Since the present proposal uses equipment

which is essentially inaccessible to personnel, and techniques which are a gen-

eralization and extension of the two man rule. many of the personnel issues are

not particularly relevant.

Other questions raised in this literature include: How can trustworthy per-

sonnel be selected? What sort of "access control" mechanisms are appropriate

for controlling the movements of pe ople into and within a facility? What is the

best way to motivate compliance with security relevant rules? and How can the

user interface of the security mechanism best be designed so as not to

encourage bypassing by the user?

In any system in which personnel must be trusted. the possibility always

exists of influence by positive means such as bribery. negative means such as

blackmail. and the combination. Also. one can never be sure that a person's

behavior will remain uniform. For example. stress in personal life, breakdown,

suggestion and drugs can cause substantial changes in behavior.

Protection

In some dedicated applications. such as some of those mentioned earlier for

which the present work may be particularly well suited. answers to the question

Who can make what kind of accesses to what data? may be quite obvious and

simple. In more general purpose systems. such as operating systems and data-

16

base management systems. it may be difficult to decide on a way to describe the

kinds of accesses allowed. There may be various design objectives. such as.

closeness of fit to anticipated application requirements. ease of user under-

standing. implementation efficiency. appropriate default rights. congruence with

user motivation. and convenience of use.

For operating systems. the proposed access control models are often

divided between the "access control matrix" approaches [Lampson 74]. and the

"information flow" approaches [Denning 76]. In the access control model. a

matrix contains the type of access allowed by each of a set of subjects to each of

a set of objects. Data flow is a generalization of the U.S. classification scheme.

which was based on the British scheme. where information is allowed to flow up

to higher classifications but not down to lower classifications. Recently. Stough-

ton [81] has proposed a synthesis of the two approaches. In database manage-

ment systems. the protection structures proposed may be divided between the

access control style and the value dependent. An interesting approach called

query modification has been suggested [Stonebraker 75]. in which additional

restrictions are automatically appended to each query before it can be pro-

cessed.

The general case is further complicated because provisions must be made

which allow access rights to be changed and even for the rights related to who

can change access rights to themselves be changed. Much theoretical work,

such as that of Harrison. Ruzzo & Ullman [76]. demonstrates that it may not be

practical to determine who ultimately may access what. even with rather limited

kinds of transfer rights.

In general. when preventive means are not available. it may still be possible

to preserve a record which reveals abuses. Thus. various "logging" or "audit

trail" techniques have been proposed. such as those of Weissman [69].

17

Verification

]n the present context, verification is intended to mean the process of

developing certainty that some formally described mechanism has some desired

properties; the term certification is used here to mean that some physical

mechanism "conforms" to the formal description. This subsection points into

the relevent literature on verification; little has been found in the literature on

certification (but see Weisman [69]), a topic which is covered in Chapter IX. The

field of program verification was given a formal foundation by Floyd [67J. He

defined a program to be "partially correct" (with respect to some input and out-

put assertions) if the truth of the input assertions before program execution

guarantees the truth of the output assertions after program termination. (A

"totally correct" program was a partially correct program whose execution is

guaranteed to terminate.) He gave a method based on inductive assertions for

determining partial correctness of programs. Proof techniques for parallel pro-

grams have also appeared (see OVlricki and Gries [76] for example). Proving pro-

perties about cryptographic protocols is also receiving attention (see Dolev and

Yao [81] for example).

A variety of automated specification and verification systems have been

developed and are extensively used for security work (see Cheheyl et al [Bl] for

a recent survey). In such systems, formal specification languages are used to

define the intended function of a module, while omitting as much implementa-

tion detail as possible (see Rammamoorthy and So [Bl] for a survey). For exam-

ple, the HDM (Hierarchical Design Methodology) [Robinson and Levit 77; Levitt,

Robinson and Silverberg 79] uses the specification language presented by Parnas

[72] to describe systems as a hierarchy of abstract machines. (The Parnas

specification language is extended in Chapter V and used to present the algo-

rithms proposed here.) Global and local security properties of programs execut-

ing on multiple processors, and employing cryptographic techniques, of much

18

the same order of complexity as those algorithms presented in Chapter V have

recently been verified [Good et al 82].

§5 Physical Security

The little open literature on protecting equipment from probing and

modification is considered.

Shielding techniques for protecting mechanisms against analysis of their

radiated signal energy. or probing by externally supplied energy. seem to be

rather well understood. and are covered by the classified TEMPEST

specifications.

Tamper-safing systems can be divided between those which merely indicate

tampering to an inspector. and those systems which can detect tampering and

can respond by. for example. destroying some secret information. In some

cases it may be desirable to augment a tamper-Tesponding system with tamper-

indicating techniques and periodic inspections. (See the next chapter for more

on combinations.) There is a small amount of unclassified literature on tamper-

indicating techniques [Poli 78]. but almost nothing on high level tamper-

responding techniques-but see Chaum [82].

One approach to the problems of TEMPEST and tamper-safing includes plac-

ing apparatus to be protected in relatively inaccessible locations. For example,

satellites or satellite platforms may provide an ideal location because it

becomes very difficult to surreptitiously compromise equipment in such a visi-

ble and inaccessible location, or to get close enough to obtain an acceptable sig-

nal to noise ratio from even moderately well shielded equipment. (Such loca-

tions may also be quite attractive because of the kinds of communication chan-

nel typically provided by satellites, as mentioned later.)

Another location which has great potential. and has actually been used for

protecting apparatus (see Sandia [81] for example), is the boltom of well holes

19

in rock formations. Seismic sensors do a good job of detecting attempts to

come even moderately close to the protected apparatus.

Installations in office building environments are also possible. While it is

beyond the scope of the present work to discuss the various possibilities for

solving these problems in less remote locations, it may suffice to point out that

tamper safing and shielding have obvious importance in intelligence and military

systems, and one can safely assume that these problems have been adequately

solved for these applications. Thus, it appears that the physical security

requirements of the applications considered earlier are quite reasonable.

§6 Survivability

This section surveys the issues in survivable systems, which include

barriers or hardening, redundant communication, redundant

storage, and reliable mechanisms.

As in the previous section, the requirements of the kinds of applications

considered will appear quite practical based on the following discussion.

Barriers

The problem of providing substantial resource requirements and delays to

would be penetrators has been referred to as the ba.rriers problem in the

nuclear safeguards literature [Sandia 7S]. Acceptable barriers for some applica-

tions can be provided by concrete and steel structures, but more sophisticated

barriers are constantly under development by the manufacturers of beller safes

and vaults. Such developments are rarely published and are only alluded to in

sales literature. Unfortunately, the so called "shaped charge" can almost

instantly penetrate any barrier of reasonable thickness. But, quite satisfactory

barriers can be provided by placing equipment to be protected in inaccessible

20

locations, such as the well holes described in the previous section.

Reliable Equipment

Largely because of developments in space and aviation, computer systems

and related equipment have been developed which use redundant mechanism to

achieve extremely high reliability. (See Randell et al [78] for a relat.ively recent

survey.) Some of these advances are already enjoying widespread use in earth-

bound business transaction processing systems, and are likely to become

increasingly more widespread because of trends such as decreasing hardware

costs and increased dependency on real-time systems. Thus, for the sorts of

applications the present work is directed at. highly reliable systems may be

rather common.

Survivability of Data

One very nice thing about safely encrypted data is t.hat a proliferation of

copies does not pose any additional threat to security. but it has great potential

for increased survivability. Multiple copies of encrypted data can exist at a

variety of sites. some of which may be hardened. Also, when broadcast style

communic1ition channels are used, locations which are maintaining copies of

data may not even be known to the issuer of the data. and might therefor.e be

extremely difficult for an adversary to even det.ect. Today. several companies

provide secure data storage sites for magnetic recording media. Some of the

facilities are located deep within mountains while another is in an abandoned

telephone switching center which was hardened to withstand a several megaton

blast.

21

Survivability of Communication

The ability to communicate in spite of an adversary is of obvious impor-

tance for military applications. The use of redundant and alternate channels is

one standard approach to the problem [Frank & Frisch 70]. Other more

effective approaches are under development and in use, however, they receive

little coverage in the literature. One important approach is the use of crypto-

graphically controlled "spread spectrum" radio techniques, which provide a

broadcast signal which is nearly impossible to jam [Haakinson 78]. Also highly

redundant error correcting codes can greatly increase the survivability of

transmissions in a noisy environment.

§ 7 Related Work

A few extended citations give credit to some relevant earlier work.

1t seems appropriat.e to include t.his section to put the present. work in per-

spective with some proposals of others addressed at similar problems.

Feistel might be called the father of modern conventional public crypt.ogra-

phy. His plan and motivation for non-military use of cryptography comes

through in the first part of his int.roduction to "Cryptographic Coding for Data-

Bank Privacy," which is excerpted below. This document remained classified

"IBM CONFIDENTIAL" for a couple of years after it originally became a

"Research Report" in 1970.

A Data Bank is essent.ially a machine to machine com-
munications network in which input terminals are con-
nected to a centrally located computer. the physically
secured CPU.

The most outstanding feature of the kind of network
structure we are talking about is that it must function reli-
ably in a hostile environment. Secrecy in the usual sense,
that is concealment of the meaning of the messages

22

conveyed, would form the basic element of protection. This
is required to insure the privacy of those forming the data
bank community. But machine communications systems, in
contrast to systems which can enlist the subtle filtering
capabilities of the human brain are very sensitive to
interference and deception. Without special protection
computers are easily fooled and this can become an intoler-
able burden to a data bank operation if this remains upno-
ticed. Both accidental and intentionally designed errors
must be detected with very large safety margins. A
machine to machine communications network requires a
properly secured method which assures the receiver that all
incoming communications are of legitimate origin and
uncorrupted. In military systems such methods are called
authentication. We shall present a method called central-
ized verification. In contrast to military systems, where all
participants have the same key, our system emphasizing
individual privacy permits each individual member of the
data bank to have his own private key

The heart of our Data Bank Network is the so called
Vault, which is properly secured physical location of the
central data processing facility consisting of a time sharing
CPU and appropriate storage or filing facilities.

Schroeder realized, early on, that many important applications of computer

systems could involve groups with conflicting interests. His dissertation,

"Cooperation of Mutually Suspicious Subsystems in a Computer Utility," evolved

out of work on MULTICS under Saltzer, at MIT, and also appeared as a Project

MAC technical report in 1972. The following excerpts indicate the motivation

and scope of his work.

This thesis describes practical protection mechanisms
that allow mutually suspicious subsystems to cooperate in a
single computation and still be protected from one another.
The mechanisms are based on the division of a computation
into independent domains of access privilege, each of which
may encapSUlate a protected system. The central com-
ponent of the mechanisms is a hardware processor that
automatically enforces the access constraints associated
with a multidomain computation implemented as a single
execution point in a segmented virtual memory

In this thesis interest is centered on protection
mechanisms within computer systems. The viewpoint is that
of a computer system designer who is intent upon providing
efficient protection mechanisms applicable to a wide range
of problems. Questions of privacy influence this effort to the

23

ext.ent. of implying criteria which must be met before such a
computer system can be applied to those problems where
privacy is an issue. The thesis. however. contains little
explicit consideration of privacy.

To furt.her define the scope of the thesis. consideration
is limited to problems of hardware and software organiza-
tion. While it is recognized that issues such as installation
security. communication line security. hardware reliabilit.y.
and correctness of hardware and software implementations
of algorithms must be considered in order to achieve the
secure environment required for useful application of pro-
tection mechanisms. these topics are beyond the scope of
the thesis

Taken together. the hardware and software mechan-
isms described in this thesis constitute an existence proof
of the feasibility of building protection mechanisms for a
computer utility that. allow multiple user-defined protect.ed
SUbsystems. mutually SUSplCIOUS of one another, to
cooperat.e in a single computation in an efficient and natural
way.

Parker has provided the public with many amusing tales of crimes per-

petrated by individuals against organizations maintaining computer systems.

While the present work tends to be concerned wit.h protecting individuals or

groups from organizations maintaining computer systems, the solution

envisaged by Parker in his 1976 copyright book, Crime by Computer, is quite

instructive.

It must become clear to the business community,
government, and finally the public that the safety of our
economy and our society is growing increasingly dependent
on the safe use of secure computers.

An ideal secure computer system including data com-
munication capability would be ,one of proven design which
could be run safe from compromise without human inter-
vention. It would be served by computer operators who
would be allowed only to perform tasks directed by and
closely monitored by the computer. No maintenance by
human beings would be allowed in its secure operational
state. All failures short of being physically damaged from
an external force would be failsafe, and a failure not
automatically reparable or overcome would cause the sys-
tem to shut down in an orderly. safe fashion and 10cJc up all

24

data files in a separate. secure storage.

It might take four trusted executives. including a spe-
cial government inspector. simultaineously to insert and
turn keys in the system console locks to change the mode of
operation from "secure" to "open." Then human access to
modify and repair the system would be allowed. Before
returning the system to secure state again. a team of audi-
tors would go through an elaborate process of reproving and
testing the secure state. Once the system is again declared
secure. another group of four executives would simultane-
ously turn their keys in the console locks to make the sys-
tem again operable in secure state.

25

Chapter III

Assumptions

This chapter is intended to make sutIicient assumptions so that the

proofs of Chapler VII can be completed. In addition. the fundamental

assumptions which shape the proposed design are presented.

In the first two sections of this chapter. notation is presented for the cryp-

tographic techniques introduced in the previous chapter, and this notation is

then used to describe the properties desired of the techniques. Section three

makes explicit the assumptions about certification used in the proofs of chapter

VII. (Certification of vaults is covered in Chapter IX.) The last two sections of the

chapter present the assumptions about physical security and organizational

structure which shape the design of the proposed systems.

§ 1 Cryptologic

Defines exactly what a crypto-system is assumed to make intractable.

It will be assumed that the possibility of successful "forgery," " sealbreak-

ing," or "de-compression" efforts, using feasible amounts of computation, is so

small that it can safely be ignored.

26

Notation. Someone becomes a user of a public key cryptosystem by creat-

ing a pair of keys. K and }\1. from a suitable randomly generated seed. The pub-

lic key Kis made known to the other users. or anyone else who cares to know it:

the private key 1\1 is never divulged. The encryption of X with key K will be

denoted K(X). and is just the image of Xunder the mapping implemented by the

cryptographic algorithm using key K The increased utility of these algorithms

over conventional algorithms results because the two keys are inverses of each

other. in the sense that K'"1(K(X» = K(K'"1(X» = X .

. Forgery

A user signs some material X by prepending a large constant C (all zeros.

e.g.) and then encrypting with its private key. denoted }\l(C,X) = Y. Anyone can

verify that Y has been signed by the the holder of }\1, and determine the signed

matter X. by forming K(Y) = C.x. and checking for C.

A digital signature is forged by someone who creates it without the

appropriate private key }\1. A potential forger is assumed to have the public

key K and the ability to have some items of the forger's choice signed. A forgery

attempt is considered successful if it yields some item Y that has not been

signed using the private key but for which K(Y) = CX. regardless of what X is.

One forgery strategy is to choose values for Y at random, until one is found

whose decryption with Kyields something with a prefix of C.

An alternative attack that is of general utility requires only a public key.

The corresponding private key can be found by using candidate private keys to

decrypt an item encrypted with the public key. until one such decryption yields

the original item.

27

Sealbreaking

The sealing of X with K. is denoted K(R,X), where R is a random string.

A potential sealbreaker is assumed to have the public key K. a set of items

of uniform size and another set containing the items of the first set in sealed

form. A successful sealbreaker knows something about the correspondence

between the elements of the two sets. One sealbreaking strategy is to guess the

random information R that was used to seal one particular item from the

unsealed set. Prepending the guess to the item and encrypting with the public

key would yield an item from the set of sealed items only if the guess were

correct. This would reveal a single correspondence.

De-{;om pression

A compression function F maps a large string of domain bits D into a

roughly key-sized string of bits R. The adversary is assumed to have the func-

tion F, an element of the domain D of interest, and of course R = F(D). The

adversary is successful if a second element of the domain, D', can be produced

such that D' ¢ D and R = F(D').

§2 Partial Key Techniques

Defines what is expected of' a partial key technique, and also makes

Significant assumptions about their use.

It is assumed that the possibility of someone not privy to the seed or

sufficient partial keys being able to determine anything about the original key

which was divided is so small it can safely be ignored. Also, knowledge of even

chosen partial keys never gives any clue about the seed used.

26

The entities holding partial keys in this thesis will be assumed "equally

capable". In other words, they will be a homogeneous set, any subset of cardi-

nality greater than the threshold value established for the partial keys will be

sufficient to reconstruct the original key. A similar homogeneity assumption will

be made about other kinds of voting as well. These assumptions strongly :flavor

the approach presented in the following chapters. The possibility of other

approaches is mentioned in Chapter X.

§3 Verification & Certification

Defines the requirements of verification and initial certification.

Assume that mutually suspicious groups can know that the plan for a vault

has the desired properties and that the vault operates correctly according to

the plan, as a result of some verification and certification procedures.

Verification was discussed in the previous chapter; some new approaches to per-

forming certification are the topic of Chapter IX.

§4 Physical Security & Survivability

Potential attacks on a vault are described and compared.

This section presents a list of possible attacks on a vault. The results of

these attacks vary from tolal covert control of a vault by an attacker, to simple

destruction of a vault. The following is a summary of the potential threats

against a vault, roughly in decreasing order of difficulty:

(1) Surreptitious corruption-vault has been modified, and secrel keys within

vault may be known; the attack is not delectable by inspection; both

tamper-indicating and tamper-responding mechanisms have been defeated.

(2) Detectable corruption-same as (1) but inspection will reveal at least

attempted tampering; tamper-indicating mechanism has not been defeated.

29

(3) Compromise -secret information within the vault has become known to

attacker, but the attack leaves no trace; attack may consist of probing, lim-

ited compromise of the tamper-sating mechanism, exploitation of

weaknesses in the TEMPEST techniques employed, or possibly cryptanalysis.

(4) Covert isolation -node kept from communicating with anyone except

attackers; node presumed dead to observers; may be a difficult attack

where broadcast style communication channels are used.

(5) Overt isolation-communication with outside blocked; attack obvious to

observers; e.g. jamming in a system with broadcast style communication.

(6) Destruction-vault is disabled.

§5 Organizational Structure

Defines the three tier organizational structure assumed for the most

elaborate application of the proposed systems.

Chapter I mentioned the existence of one group in a computer application

that is particularly concerned with reliability and survivability of the system.

The systems design proposed in subsequent chapters further divides this group

into three different bodies, called trustees. The analogs of these bodies in a cor-

poration might be its officers, directors, and stockholders. The following table

the functions and exposure to the three levels of trustees:

(1) trustee level 1-charged with day-to-day operations of the system, which

include implementing a policy which balances survivability and perfor-

mance, within the policy constraints formulated by the trustees at level 2;

has no significant advantage in attacking security over anyone.

(2) Trustee level 2-charged with policy formation aspects of trusteeship, in

which the trustees at level 2 must define how difficult it will be for them and

also how difficult it will be for others to defeat the system. to decide which

30

new vaults will be used; will be able to compromise some security proper-

ties without any attack, but only after giving advance notice.

(3) Trustee level 3-charged with the ability to restore the whole system in the

event of disaster; can perpetrate certain threats without any attack.

31

Chapter IV

Single Vault Systems

A simple single vault system is presented to introduce and illustrate

some of the basic ideas of the proposed systems. and also to motivate

and define the problems to be overcome by multiple vault systems.

When a certified vault is first constructed by the techniques presented in

Chapter IX, a suitable public key and its inverse private key are chosen by a

mechanism within the vault's protected interior. using a physically random pro-

cess as discussed in Chapter II. The public key is then displayed outside the

vault, on a special device certified for this purpose. As far as the world outside

the vault is concerned, the possessor of the vault's private key is the vault: it

can read sealed confidential messages sent to the vault, and it can make the

vault's signature.

§1 Checkpoints & Restarts

Introduces the notions of encrypted checkpoints and the restarts

they can allow trustees to perform.

32

What if Something Goes Wrong?

If a vault were totally destroyed, computation would be safely halted-no

secret information would be revealed, and the vault would not have taken any

improper action. Other conditions might require an equally safe halt to compu-

tation. If a tamper-responding system detects an attempt to penetrate the

vault's protective enclosure, or a fail-safe mechanism determines that the

vault's contents can no longer be counted on to operate correctly, then the

information stored in the vault, including the vault's private key, must be

erased.

This information will be encrypted in a special way, and saved outside the

vault, so that a safe recovery can be provided. The encryption of the vault's con-

tents, which includes its private key, is called a checkpoint, and is detailed

below. At suitable intervals, checkpoints are formed, and then stored outside

the vault. In some cases, there may be time to issue un-scheduled checkpoints

before an emergency requires the vault's contents to be erased.

The primary consideration behind the design of an encryption method for

checkpoints is that there exists a means to decrypt them, but only at the

appropriate time and place. The decision that some newly sealed vault can, and

should, be given the ability to decrypt a checkpoint is necessarily a human one.

Assume, for now, that the decision is to be made by unanimous consent of a set

of human trustees. Before a checkpoint is released by a vault, it is encrypted

with a special key for this purpose. Conventional as opposed to public key cryp-

tography can be used for this. This key used to encrypt checkpoints will be

divided into partial keys, one key for each trustee.

Public key cryptography will be used to distribute these partial keys to the

trustees in a secure manner. As part of the certification process, the vault is

supplied with a public key issued by each trustee. Thus, the vault can ensure

the confidentiality of the partial key it sends each trustee by sealing that partial

33

key using the trustee's public key. Each trustee now has two keys to keep

secret: a key used to unseal messages received. and a partial key that

will be used in connection with decrypting checkpoints.

Restarts

A resta.rt is the process by which a freshly sealed vault resumes the compu-

tation whose state has been saved in a checkpoint. After a replacement vault is

certified and sealed, it forms a temporary public key and its inverse private key

from a random seed. and then displays the temporary public key. as the per-

manent public key was displayed in the origj.nal start-up. Then the restarting

vault receives partial keys from the trustees. A trustee provides the secrecy of

its partial key while it is in transit to the vault by sealing it with the displayed

temporary public key.

Having received and decrypted the partial keys, the computation within the

replacement vault merges them to form the key originally used to encrypt

checkpoints, and uses this to decrypt the checkpoint received. The replace-

ment vault then bootstraps itself inlo the state saved in the checkpoint. Thus,

the original public key found in the checkpoint is reinstated, and the computa-

tion within the replacing vault becomes an exact copy of the original computa-

tion. The restarted vault can then be safely brought back up to date by re,.

playing all the messages sent it since the checkpoint was made.

§2 Limitations of Single Vault Systems

Several kinds of abuse of single vault systems by the trustees are

described and solutions using multiple vault systems are sketched

It is generally held that networks of computers may be better than a single

centralized computer system in many applications, for such reasons as

34

improved performance, increased reliability, and decreased communication

costs. The multiple vault systems to be presented in the following chapters may

be preferred over single vault systems for similar reasons. In addition to the

usual advantages, however, multiple vault systems offer solutions to many of the

problems of single vault systems:

Destruction oj InJormation. In a single vault system. the partial keys

held by the trustees will always be sufficient to decrypt any previous checkpoint.

Thus, a conspiracy of a sufficient subset of the trustees will have access to all

information, no matter how old the information is. In a multiple vault network,

however, the trustees will be forced to request certain partial keys from the net-

work during a restart in order to obtain sufficient partial keys to decrypt a

checkpoint. The network will change the keys used to form checkpoints, and the

partial keys it maintains, in such a way that obsolete checkpoints can never be

decrypted. (A conspiracy of trustees in a single vault system need never be able

to forge a vault's signature, since a private key used by a vault only for making

signatures need never be saved outside the vault.)

Record oj Restarts. In a single vault system, a conspir-

ing subset of the trustees can secretly combine their partial keys and obtain

keys sufficient to allow them to decrypt checkpoints. In the multiple vault sys-

tem, the trustees will have to request partial keys from the network to accom-

plish a restart, as mentioned above, and the network will be able to maintain a

record guaranteed to include descriptions of all such requested restarts. Such a

record is very useful because it can ensure that only certified vaults have

decrypted checkpoints, and that they have done so only during certified res-

tarts.

Advance Notice oj Security-Relevant Changes. In a single vault system,

the trustees can perform a restart using a vault which is certified but which con-

tains an arbitrary change in the security-relevant aspects of the vault's

35

operation. For example, the new vault may give greater power of inspection or

modification to the trustees. In multiple vault systems, the trustees can be

required to give advance notice of security-relevant changes. such as the public

keys of vaults to be added into the network and changes in parameters used by

the network to protect itself from the trustees.

36

Chapter V

Multiple Vault Systems

Algorithms to be performed by a collection of vaults are defined

using an extended specification language.

§1 Introduction to Algorithms

An overview of the algorithms proposed is presented which includes

the relationship of this chapter to other chapters.

This chapter describes a collection of algorithms to be performed by a

number of separate vaults, or nodes. Each node will perform essentially the

same algorithms, but some of its own state may vary. The algorithms are organ-

ized as a set of a dozen and a half independently callable routines. A node will

perform anyone of these routines on request, if it is provided with the appropri-

ate actual parameters. Typically, some of the actual parameters of a call will

bear digital signatures formed by other nodes in the system and also by various

trustees. If these signatures and the rest of the parameters prove acceptable to

the called routine within a node, then the node may alter its state and/or pro-

duce some signed and possibly sealed output as a result of performing the called

routine. Calls are bandIed one at a time by a node, so that once a node com-

37

pletes processing of one call. it begins waiting for the next call to be requested.

The nature of the algorithms and their use of cryptographic techniques

ensure that: (1) the various security properties provided by the system can not

be violated by any sequence of calls. and (2) the trustees can maintain the reli-

able operation of the network by performing suitable sequences of calls.

Chapter VII argues these points; the present chapter uses a specification

language to describe a practical version of the algorithms.

Among other things. the algorithms must provide a kind of synchronization

and agreement among nodes about allowing new nodes into the network. remov-

ing nodes from the network. and the status of nodes once in the network. The

routines will be called (for Operation function) since they are an

extension of the of the Parnas specification language [Parnas 72]. as

mentioned in Chapter II. Figure 1 shows seven of the major These

can change the membership of the network and the status of nodes

within the network. For example. the CERTIFY can bring a new node

into the network. leaving the new node in the "initiate" state. Similarly.

REMOVE_NODES can take a node in the "participated". "veteran" or initiate

states out of the network. These and the other will be described in

detail in sections 6 and 7.

Section 2 introduces the basic types. primitives and constants of the

specification language. Section 3 and 4 define the state of nodes as a collection

of Y-functions (for Value function). which have been extended to include types

not in the original Parnas notation. Section 5 defines the rather powerful

parameter passing mechanism used both for input and output by the

functions. which is an extension of the Parnas notation. Finally. as mentioned

above. sections 6 and 7 present specifications of the themselves.

38

· veteran. initiate

pa.rticipa.ted

present

" " REMOVE (T2) '" ,.

CERTIFY (T2)
'If V V CREATE KEYS, ISSUE &- " I'

) RECEIVE NEW PARTIALS
CHANGE KEYS

,If " I' V '\,
CHANGE PRESENT

"'"

TIIPlc&ced node " RESTART
,.

repLQctng node

" "
APPLY

" " "
A PARTICIPATE '
.... RECEIVE NEW PARTICIPANTS &-

NEW PARTICIPANT RECEIVE

Strictly speaking, a specification language is intended to define what a pro-

gram is to do-and not how it is to do it. Nevertheless, it will be very convenient

to apply the familiar terminology of programming languages to the specification

language used here. The presentation of the specification language will also use

a variety of type fonts and type sizes, roughly based on those used by Parnas

[72]. Some symbols will appear in upper case, others in lower case, and a few

others will combine the two. A summary of the typographic conventions is

presented in Table 1.

primitives lit constants
synta.z-m.e ta.-sym.bols
pseudo-type9
types
type-constructors, if then else & with
PARAMETElLNAMES IX TEMPORARY_VARIABLES
V-FUNCTION_NAMES lit crFUNCTION_NAMES
AGGREGATE-FUNCTION_NAMES

Table 1. Typographic Conventions

§2 Simple Types. Primitives & Constants

The basic data types of the specification language and the elemen-

tary operations which can be performed on thcm are presented.

The specification language is strongly typed, although some primitive func-

tions can have arguments of any type. Some primitive functions have no argu-

ments, but those entities with fixed values are called constants.

40

Simple Types

Some of the simple types are those usually found in programming

languages. Others are the keys, seeds, and parts of keys used by the crypto-

graphic transformations. Yet others are simply enumerated types, a La Pascal.

used as tags included in signed messages to indicate the kind of message. A

special type is used to represent node names. Chapter VIII contains some dis-

cussion of straightforward representation schemes for instances of the simple

types, and the constructed types of the next subsection, for purposes of

analysis, but further consideration of implementation techniques is beyond the

scope of this work.

A simple context free grammar will be used to illustrate the basic syntax of

the specification language. The first production of the grammar is shown here:

elementary-type -+ boolean I integer I time I node-:id I
seed I public-key I private-key I partial-key I
proposal-kind I announcement-kind I action-kind I transfer-kind

The following is a detailed definition of each of the elementary types:

boolean, integer The usual.
time The content of a clock or counter. Uniform units are used so

that the difference of two times produces an integer which is
proportional to the amount of time between the two times.

node-:id

seed

public-key

A special type whose values are used to uniquely identify nodes
and trustees, and whose values are never re-assigned.
A randomly selected value preferably from a space at least as
large as the space of possible keys, which is returned by the
primitive function create-seed and is used by the primitive
functions and to
create keys and partial-keys.
A public key that was created by a call to create-public. Gen-
eraly publicly available, and can be a parameter in calls to seal
and check-signature.

41

private-key A private key that was created by a call to create-private. Gen-
erally kept secret by its creator, except may be transferred
during a RESTART. Used in calls to sign and unseal.

partial-key A partial value of a private-key that is created by a call to
lorm,partial. Sufficient quantities of these keys can be used by
merge-partials to reconstruct the private key from which they
were formed.

proposal-kind This is an enumerated type, a la Pascal, whose values are
denoted by the constants: propose-certily propose-set-minima
and propose-Temove. They are used as inclusions in signed pro-
posals of the corresponding names.

announcement-kind
An enumerated type. whose values are used as inclusions in
announcements of proposed actions of the corresponding
names. The unique values are denoted by the constants: cer-
tilY, set-minima. and remove.

action-kind Used as an inclusion in signed announcements of trustee level 1
actions. The unique values are denoted by the constants: pro-
pose. canc el, apply. change-presents. restart, participate.
create-keys. and change-keys.

transfer-kind Used as an inclusion in signed output generated by an 0-
function and inlended to be consumed by one or two different
o-functions. The unique values are denoted by the constants:
REST ART_to_ASS UME_APPLICAT ION.
PAR TIC IPATE_to_RECEIVE_NEW_PARTICIPANT.
PARTICIPATE_to_NEW_PARTICIPANLRECEIVE.
CREATE_KEYS_to_ISSUE_NEW_PARTIALS&CHANGE_KEYS,
CREATE_KEYS_to_NEW_PARTICIPANLRECEIVE.
ISSUE_NEW_PARTIALS_to_RECElVE_NEW_PARTIALS.
RESTARLto_ASSUME_APPLICATION.
partials-Teceived, proposal, and checkpoint.

Constructed Types

The elementary types of the previous subsection may be combined into sets

or tables. This is an extension of the original notation proposed by Parnas and

further developed for HDM [Levi. Robinson and Silverberg 79]. but resembles the

sets and maps of the SETL programming language [Dewar. Schonberg and

Schwartz 81]' A set of some elementary type is just an unordered collection of

elements of the type. The usual set operators will be found in the next section.

A table is much like a one or two dimensional array. but it may be sparse and

have non-integer subscript types. The following gives a syntax for these

42

constructed types:

simple-type -+ elementary-type I
set of elementary-type I
table[element ary-type] of sim.ple-type I
table[eZementary-type][elementary-type] of simplB-type I

Examples of these constructed types will be found in each subsequent. section of

this chapter.

Simple Primitives

These primitive functions take zero or more parameters. and return a value

of a simple type. Some are generic in that some parameters need not be of any

particular simple type. Such paramet.ers will be shown as type any-type. Many of

the primitives are familiar. like t.hose needed to determine the current time and

perform the usual arithmetic. set.. and boolean operations.

A few of t.he primitives perform the cryptographic functions which were

int.roduced in Chapter II and formalized in Chapter III. Functions are defined

which create seeds. creat.e keys and partial keys from seeds. and merge partial

keys. The following identity provides an example of the use of t.he partial key

primitives. It simply asserts that partial-keys formed from a key using a com-

mon seed can be merged back into the original key.

if s = create-seedO then
TfL'!!!!;TfLerge-partials{forrrvpartial(1, s, TfL, 2)'/ormpartial(2, s, TfL, 2»

The following provides detailed definitions of the primitive functions.

43

cre ate -se e d () -+ seed
Returns a seed derived from a physically random process
within the instant node, and has no parameters.

create-public (s:seed)-+public-key
Returns a public key that is a function of the parameter, seed s.

create -private (s:seed) -+private-key
Returns a private key that is a function of the seed s. The
private key corresponds to the public key created by a call to
create-public with the same parameter s.

/orrn.-partial (n:any-type, s: seed a: any-type, m:integer) -+ partial-key
Returns a partial value of the parameter a, with a threshold
value of m (see merge-partials). using seed s. Calls with
different values or types for n produce distinct partial values.
m different partial values created with identical s are necessary
and sufficient to determine the original value a. The seed scan
not be determined even if all results of all possible calls are
available, and without the seed the values of any call give no
clue about the values of a used in another call.

merge-partials (p:set of partial-key)-+ l1:any-type
Returns the original value of 11 which was divided into parts by
formrpartial. The parameter p must include at least as many
partials formed from the original a as the threshold with which
they were formed.

compress(a:any-type)-+i:integer

now 0-+ time

Returns a cryptographic compression of the argument into an
integer. Thus, given a and i = compress(a) and the function
compress, it is infeasible, under the assumptions of Chapter III.
for an adversary to produce a' such that i = compress(a') and
a' 'F a.

Returns the time maintained by the clock of the instant node.

suicide (m: integer)
A real-time counter is set to count down for an interval of m,
and if the counter ever reaches D. the instant vault sets all its
secret V-functions to the value erased and in effect kills itself.

cardinality (s:set of any-type)-+integer
Returns the number of distinct members of the set s.

+. -, x-+integer These are the usual infix operations performed on integers.
Also - applied to two times is an integer which is negative when
the time on the right is before the time on the left. (See
definition of time.)

44

45

-, U, n set of lIDy-type
The usual infix operators defined on sets, returning sets.

< , boolean.
Comparison infix operators.

e:, t , c boolean.
Set membership, its negation, and subset.

Simple Constants

Besides the standard use of Arabic numerals as literal constants, there are

two major sorts of constants used in the specification language. One kind of con-

stant is used to indicate the various vacuous values, such as the empty set, un-

initialized or don't-care values, and a special value indicating that all informa-

tion about any previous value of the function is lost. The second sort of constant

is used to reference information certified into the vault initially which specifies

the keys, number and quorum sizes of the two groups of trustees and the

enforced delay intervals on their actions. The certification of constant values

into vaults is covered in Chapter IX.

Of course more elaborate versions of the algorithms presented here might

include mechanisms to allow some or all of the constant values related to the

trustees to be changed during operation of the network-much as the

SET_MINIMA D-function does in the present algorithms. But such flexibility

may actually prove undesirable, since those supplying information to a system

may not wish to do so if the ground rules for its security can be revised in an

arbitrary way.

A detailed definition of the simple constants follows:

empty
undefined
erased

The empty set.
No particular value.
No trace or clue is left about the previous value of any Y-
function with this value.

coo ling -oJ!4,nteru al
The minimum interval of time required between the time the
last member of a majority of present nodes signs a proposal
and the time the first node signs the announcement of the
action defined by that proposal.

The set of public keys held by the trustees at level 1 which are
used to check all signatures purported to be made by trustees
at level 1.

truste e -2-publics
The set of public keys held by the trustees at level 2.

fruste e -l-quorum
The number of trustees at level 1 whose signatures are
sufficient to authorize anything that can be authorized by
trustees at level 1.

fruste e -2-quorum

trustee-l-ids

truste e -2-ids

The number of signatures of trustees at level 2 required to
authorize any proposed action. Also the number of trustees at
level 2 whose trustee partials are required by the replacing
node in a restart.
The set of node-ids which includes one member for each trustee
at level 1. (As mentioned elsewhere, trustees are not nodes,
but this convention greatly reduces the proliferation of types
and typing mechanisms.)
The set of node-ids which includes one element for each trustee
at level 2.

§3 Secret V-functions

The V-functions which record information not publicly available are

defined, their use discussed, and initial values given.

Variable functions, or V-functions, are the variables which hold a vault's

state. The Y-functions of a vault can be divided into those which the vault must

keep secret and those which are public knowledge. This section presents the

secret Y-functions; the next section presents the non-secret V-functions.

The Y-function definitions presented here usually include three parts: (1) a

heading which defines the name and type of the V-function; (2) an initial value

46

part that includes the name and an expression whose value is the initial value:

and (2) a comment part which discusses the intended use of the V-function.

The following productions give the basic idea of the syntax, further details

being supplied in later sections:

v-/unction name :simple-type :V-function initialJUalue comment
initialJUalue Initial: name = expression I derivation
comment Comment: wildcard

Vaults must at minimum maintain the secrecy of their private keys upon

which the security of the entire system relies. There will be two different kinds

of secret keys, as mentioned in the previous chapter. Some keys need never be

known outside the vault-these are the node secret keys. Other keys are kept

secret by the vault, but they have been divided into partial keys and provided to

other vaults for use during a restart-these are the application secret keys. In

the following two SUbsections, each kind of secret V-functions is considered

separately.

N ode Secret Y-functions

The V-functions described in this subsection never leave the vault. When

the vault destroys its own information content, the values of these V-functions

are set to erased..

This sub-section makes the first formal reference to the notion of sub-

partial keys. These are just partials of partial keys. In other words, some thres-

hold of sub-partial keys are sufficient to reconstruct the original partial key

from which the sub-partials were originally formed. The algorithms in this

chapter allow the trustees to decide how many, if any, sub-partial keys will be

47

used by the network. The reason for this is that while the use of sub-partials

does provide somewhat more convenience and flexibility in the operation of the

network, they also have non-trivial cost in terms of system resources (see

Chapter VIII for analysis of resource requirements). Sub-partial keys allow a

"quorum" of nodes to, among other things, cause any node not participating in

the last key change to become "participated" and enter a state equivalent to

that which would have been achieved had it participated in the key change. res-

tart nodes in an arbitrary order. and diminish the quorum size. The essence of

this mechanism is that sufJicient sub-partial keys allow every quorum of

"present" nodes to form a partial key for other nodes in the network.

The following are definitions of the node secret V-functions:

NODE_PRIVATE:private-key: V-function
Initial value: NODE_PRIVATE =

crea.te-priva.te (let INITIAL_NODE-EEED = create-seedO)
Comment: The private application key of the instant node. The initial value

uses a V-function which is local to the initialization process
INITIAL_NODE_SEED.

NEW _NODE_PRIVATE:private-key: V-function
Initial value: NEW_NODE_PRIVATE = undefined
Comment: Returns the application private key which will be assumed by the

instant node if it is a participant in a CHANGE_KEYS or subject of a PAR-
TICIPATE before the next key change, This private key is created by
CREATE_KEYS and corresponds with NEW_NODE_PUBLIC,

PARTIAL_SEED:seed:. V-function
Initial value: PARTIAL.SEED = undefined
Comment: Returns the randomly create'd seed used to form partial keys.

Created and changed by CREATE_KEYS, PARTIAL.SEED is used by
ISSUE_NEW_PARTIALS and also by the subject node of PARTICIPATE.

48

PARTIAL_KEYS:table[node-id] of partial-key. V-funclion
Initial value: ""'p PARTIALKEYS[p] = undefined
Comment: The partial key held by the instant node for the participated node

p is PARTIAL_KEYS[P]. The constituent partial keys are received by
RECEIVE_NEW_PARTIALS and by RECEIVE_NEW_PARTICIPANT.

NEW_PARTIALKEYS:table[node-id] of partial-key. V-function
Initial value: ""'n NEW_PARTIAL_KEYS[n] = undefined
Comment: Returns the new partial key held by the instant node for the

selected node. The value is obtained by RECEIVE_NEW_PARTIALS and
will replace PARTIAL-KEYS iff the instant node participates in a
CHANGE_KEYS before the next CREATE_KEYS.

SUB -PAR TIALS:table[node-id] [integer] of partial-key. V-function
Initial value: ""'p ViSUB-PARTIALS[P][i] = undefined
Comment: The partial partial key held br the instant node for the partici-

pated node n, to be released to the node assuming the ith set of sub-
partials. The values are obtained from NEW_SUB-PARTIALS after the
instant node participates in a CHANGE_KEYS, or from the input supplied
to NEW_PARTICIPANT_RECEIVE. The SUB-PARTIALS[P][i]s held by a
quorum of present nodes for a particular set of sub-partials indexed by i
are sufficient to allow merge-partials to determine a partial for node p.

NEW_SUB-PARTJALS:table[nodc-id][integer] of partial-key. V-function
Initial value: 'Vn V'iNEW_SUB-PARTJALS[n][i] = undefined
Comment: Returns values accumulated since the last CREATE_KEYS which

will replace SUB-PARTIALS iff the instant node participates in a
CHANGE_KEYS before another CREATE_KEYS.

OWN_TRUSTEE_PARTIALS:table[node-id] of partial-key: V-function
Initial value: Vn OWN_TRUSTEE_PARTJALS[n] = undefined
Comment: OWN_TRUSTEE_PARTIALS[n] is a private key which must be

present in the instant node when the instant node is the replacing node in
a RESTART in which node n is the replaced node. Values of
OWN_TRUSTEE_PARTIALS are obtained by the subject of CERTIFY for all
the nodes it is certified for for (except itself), and any values for which
the subject is not certified are erased. In an application where some
different nodes have access to different data, a particular vault may not
be approved to restart some nodes.

49

I ,

'.

Application Secret V-functions

Care is taken to ensure that APPLICATION_PRIVATE can be recovered only

with partial keys of the most-recently completed key change. and that

NEW_APPLICATION_PRIVATE can be recovered with partial keys distributed for

the next key change. Of course there is presumably much secret application

data which must be included in checkpoints. and it should also be divided into

current change period and new period-so that obsolete application data

becomes inaccessible once a node changes keys. The aggregate Y-function.

APPLICATION_SECRET_ V-FUNCTIONS. is assumed to contain all application

secret data from the current change period;' the aggregate

NEW_APPLICATION_SECRET_ V-FUNCTIONS contains all application data

for the forthcoming key period.

The following are definitions of the two application Y-functions relevant

here. one for each aggregate:

APPLICATION_PRIVATE:privale-key: Y-function
Initial value: APPLICATION_PRIVATE = creafe-privafe(creafe-seedO)
Comment: The private application key of the instant node.

NEW_APPLICATION_PRIVATE:privale-key: Y-function
Initial value: NEW_APPLICATION_PRIVATE = undefined
Comment: Returns the application private key which will be assumed by the

instant node if it is a participant in a RESTART or subject of a PARTICI-
PATE before the next CHANGE_KEYS. This private key is created by
CREATE_KEYS and corresponds with NEW_NODE_PUBLIC.

50

§4 Non-Secret V-functions

Those are presented which relate to node state that is

not secret.

Some V-functions in this section are defined in terms of expressions involv-

ing other Y-functions, and they have a "derivation" part instead of an initial

value part:

derivation -. Derivation: nam.e = expression

The OWN_NODE Y-function is special in that its value never changes during

the life of a node, but the actual initial value of each node's OWN_NODE must be

unique. No initial value part or derivation is used for OWN_NODE.

As will be seen in Chapter VII, it is quite useful to distinguish those Y-

functions whose values must be in agreement across nodes, from those Y-

functions which are not subject. to any consensus constraint. These two kinds of

V-functions are covered in separate subsections.

Consensus Y-functions

The non-secret Y-functions presented in this subsection are intended to

have identical value for all nodes with the same value of CYCLE (which is defined

in the next subsection). They define the status of the network. As a notational

convenience, the consensus Y-funclioris are denoted collectively as

CONSENSUS_ V-FUNCTIONS.

51

NODES_IN_ USE:set of node-icl: Y-function
Initial value: NODES_IN_ USE = empty
Comment: Returns the set of node ids which includes an id for every node in

the network. These exclude all removed nodes and include the newly
CERTIFYed initiate nodes which have not ever been members of PARTICI-
PATED, and all veteran nodes which are those nodes who have been
members of PARTICIPATED at least once, whether or not they are
presently participated.

USED_NODE_IDS:set of Y-function
Initial value: USED_NODE_IDS = trustee-l-ids u trustee-24.d.s
Comment: Returns a set of node ids which are not suitable for use by any new

node. CERTIFY ensures that new nodes do not use ids in
USED_NODE_IDS, REMOVE_NODES places the id of all removed nodes
into USED_NODE_IDS, and RESTART places the id of the replaced node
in USED_NODE_IDS. For simplicity in typing and signature checking
primitives, as already mentioned, are also used to identify the
trustees.

PARTICIPATED:set of node-id: Y-function
Initial value: PARTICIPATED = empty
Comment: Returns the set of node ids which includes exactly those nodes

which were included as PARTICIPANTS in the last CHANGE_KEYS and all
those nodes which have been the subject of subsequent PARTICIPATEs.
Any node which is to become present must be a member of PARTICI-
PATED.

PRESENT:set of node-id: Y-function
Initial value: PRESENT = empty
Comment: Returns the set of node ids which defines the most privileged and

capable subset of nodes. Every QUORUM of members of PRESENT have
sufficient partial keys to enable them to restart any present node. Signa-
tures of a QUORUM of members of PRESENT are required before any
node may perform any synchronized D-function.

ABSENT:set of node-id: Y-function
Derivation: ABSENT = NODES_IN_USE - PRESENT

APPLIED:set of node-id: Y-function
Initial value: APPLIED = empty
Comment: Returns the set of node ids of all nodes which currently have an

application. Nodes enter applied when they are the subject of an APPLY
or when they are the replacing node in a RESTART and they leave
APPLIED when they are a subject of REMOVE_NODES or the replaced
node of a RESTART.

52

MAJORITY:integer: Y-function
Initial value: MAJORITY = 0
Comment: The minimum number of signatories required before any

announcement or action can be carried out. Set by CHANGE_PRESENT.
Must be at least as great as QUORUM and no greater than
cardinality(PARTICIPATED). and satisfy the MINIMUM_MARGIN require-
ment.

MARGIN:integer: Y-function
Derivation: MARGIN = (2x MAJORITY) - cClrdinality(PRESENT)
Comment: The minimum intersection between any two MAJORITYs of

PRESENT nodes.

MINIMUM_MARGIN:integer: V-function
Initial value: MINIMUM_MARGIN = 1
Comment: The smallest allowable value of MARGIN. The value of

MINIMUM_MARGIN is changed only by SET_MINIMA. and can not be set
below 1. which ensures that MAJORITY is always a simple majority of
cardinality (PRESENT).

MINIMUM_QUORUM:integer: Y-function
Initial value: MINIMUM_QUORUM = 0
Comment: The smallest allowable value of QUORUM. Set by SET_MINIMA.

QUOR UM: integer: Y-function
Derivation: QUORUM = QUORUMS[LAST_CHANGE]
Comment: The current quorum.

QUORUMS:table[integer] of integer: Y-function
Initial value: QUORUMS[O] = 0/\

'Vn(if n #:- 1 then QUORUMS[n] =
Comment: Returns the number of partial keys required for a restart of a

node who last participated during key change n. for all
LAST_CHANGE. Thus. QUORUMS[LAST-CHANGE] returns the

number of partials of the current key change period which are required
by merge-partials. And QUORUMS[LAST_CHANGE + 1]. returns the
number of nodes whose partials or sub-partials will be required for a suc-
cessful merge-partials during the next key change period. if no further
CREATE_KEYS occurs before the next CHANGE_KEYS.

53

SUB-PARTIALS_REMAINING:table[node-id] of integer: l'-function
Initial value: 'V'n SUB-PARTIALS_REMAlNING[n] = undefined
Comment: Returns the number of sub-partials remaining for the nth node.

New entries are established by CERTIFY.

NEW_SUB-PARTIALS_REMAINING:table[node-id] of integer: Y-function
Initial value: 'V'n NEW_SUB-PARTIALS_REMAINING[n] = undefined
Comment: Returns the number of sub-partials that are needed by the nth

node during the current key change period as established in the last
CREATE_KEYS.

LAST_CHANGES:table[node-id] of integer: Y-function
Initial value: 'V'nLAST_CHANGES[n] = undefined
Comment: LAST_CHANGES[n] returns the last key change period during

which node n participated in the initial CHANGE_KEYS or in which n was
the subject of a PARTICIPATE. New entries are established by CERTIFY.

LAST_CHANGE:integer: Y-function
Derivation: LAST_CHANGE = LASLCHANGES[i]

J
Comment: Returns the number of the last key change the instant node has

processed, whether or not the instant node participated.

KEY_CREATION_# :integer: Y-function
Initial value: KEY_CREATION_# = 0
Comment: Returns the serial number of action calls of the CREATE_KEYS 0-

function. Notice that there may be more than one call to CREATE_KEYS
between calls to CHANGE_KEYS and that all but the last such call have no
effect on the CHANGE_KEYS because PARTIALS_RECEIVED is emptied by
CREATE_KEYS and all relevant transfers include the KEY-CREATION_#.
(The multiple calls may be convenient since they allow a new quorum and
complement of sub-partials to be selected.)

S UICIDE_INT ERVAL :inlegcr: V-function
Initial value: SUICIDE_INTERVAL = cooling-off-interual
Comment: Returns a time interval (i.e. an integer) during which a node must

become participated or it will commit suicide. The actual call to suicide
is made on the SUICIDE_INTERVAL minus the amount of time since the
earliest timestamp among the majority of signatories to the
CHANGE_KEYS or PARTICIPATE in which the instant node is a subject.
The initial value is such that a SET_MINIMA must occur before a
cooling-off-interual has elapsed since the first CHANGE_KEYS partici-
pated in.

54

NODE_PUBLICS :table[node-id] of public-key: Y-function
Initial value: "-fn NODE_PUBLICS[n] = undefined
Comment: The current application public key of every node in use.

APPLICATION_PUBLICS:table[node-id] of public-key: V-function
Initial value: 'o'nAPPLICATION_PUBLICS[n] = undefined
Comment: The current node public key of every node in use. New entries are

established by CERTIFY, and existing entries are changed for subjects of
CHANGE_KEYS and PARTICIPATE.

CERTIFICATION:table[node-id] of set of node-id: Y-function
Initial value: "-fn CERTIFICATION[n] = undefined/\

CERTIFICATION[OWN_NODE] = empty
Comment: Each node in use n has associated with it a set of other nodes

CERTIFICATION[n] whose applications it is allowed to assume, either by
APPLY or RESTART. The nodes comprising the certification of a node are
initialized and changed by CERTIFY.

PROPOSALS_PENDING:set of integer: Y-function
Initial value: PROPOSALS_PENDING = empty
Comment: Returns the set of all cycle numbers of proposals which have been

proposed but not canceled or carried out.

COMPRESSED_HISTORY:integer: Y-function
Initial value: COMPRESSED_HISTORY = 0
Comment: Returns a compression of CONSENSUS_ V-FUNCTIONS formed

before the action of the last cycle was completed. Since
COMPRESSED_HISTORY is included in CONSENSUS_ V-FUNCTIONS.
COMPRESSED_HISTORY is a Y-function of the entire series of states
obtained by the identical Y-functions during all previous cycles. Because
COMPRESSED_HISTORY is checked in the input of every synchronized
D-function, no node will perform any synchronized action unless its entire
history of CONSENSUS_ V-FUNCTIONS states is the same as every
other node performing the action. This is largely a redundant mechan-
ism; see Chapter VII.

Individual Y-functions

Some of the non-secret Y-functions presented in this subsection will have

unique values, never obtainable by another node. For example, a node's record

of its own past public keys will be unique. Other V-functions covered here may

55

have nearly the same values across nodes. but this strict consensus is not

enforced as in the previous subsection. For example.

PARTIALS_RECEIVED_FROM contains node ids of all the nodes from which a

node has received partial keys. These may vary as the partial keys are received

in different orders and possibly from different sets of nodes. but those main-

tained by all participated nodes will ultimately include node ids from all partici-

pated nodes. Just as CONSENS US_ V-FUNCTIONS was used to denote the

entire collection of consensus V-functions. INDIVIDUAL_ V-FUNCTIONS will be

used to denote the collection of individual V-functions.

OWN_NODE:node-icl: Y-function
Comment: Returns the node-id which identifies the instant node for its entire

life. The value should be distinct from that of all other nodes. so that
CERTIFY will allow the node to be initiated into the network. Examples of
possible actual implementation values include the simple serial numbers
of a node or the initial node public key.

PHASE: 1..2: V-function
Initial value: PHASE = 1
Comment: Returns the current phase. either 1 or 2. which is used by all syn-

chronized o-functions. When PHASE = 1 a node will add its signature to
any announcement or action which has insufficient signatures and does
not raise an exception. then the node will change to PHASE = 2. When
PHASE = 2 a node will not add its signature to any announcement. In
either phase. when a node receives an announcement with sufficient sig-
natures and no exception is raised. it will perform the effects section.
which includes setting PHASE = 1 and incrementing CYCLE.

CYCLE:integer: Y-function
Initial value: CYCLE = 1
Comment: The basis of all synchronization of the network. this monotonically

increasing value ensures that all nodes will process synchronized 0-
functions in exactly the same order. Returns the serial number of the
next announcement or action which the present node has yet to perform.

56

NEW_NODE_PUBLIC:public-key. Y-function
Initial value: NEW_NODE_PUBLIC: = undefined
Comment: Returns the instant node's own new node public key. which

corresponds with NEW_NODE_PRIVATE, and whose value was determined
during the last CREATE_KEYS.

NEW_APPLICATION_PUBLIC:public-key. V-function
Initial value: NEW_APPLICATION_PUBLIC: = undefined
Comment: Returns the instant node's own new application public key, which

corresponds with NEW_APPLICATION_PRIVATE, and whose value was
determined during the last CREATE_KEYS.

ALL_OWN_NODE_PUBLICS:set of public-key. V-function
Initial value: create (INITIAL_NODE-EEED) E:

ALL_OWN_NODE_PUBLICS
Comment: Returns all the node public keys that have been used by the

instant node to sign proposals which are pending. Because the number of
proposals pending can be kept from growing too large, through the use of
CANCEL_PROPOSAL, cardinality(ALL_OWN_NODE_PUBLICS) can be kept
to a modest size. INITIAL-NODE_SEED is a variable which is local to the ini-
tialization and which is defined in the description of NODE_PRIVATE.

PAR TIALS_RECEIVED_FROM :set of node-id: Y-function
Initial value: PARTIALS_RECEIVED_FROM = empty
Comment: Returns the set of nodes for which the instant node has received

partial keys during the current key creation period. This Y-function is
emptied by CREATE_KEYS, and new members are added to it by
RECEIVE_NEW_PARTIALS, NEW_PARTICIPANT_RECEIVE and
RECEIVE_NEW_PARTICIPANT. The unsynchronized D-function
PARTIALS_RECEIVED issues signed statements of minimum content of
PARTIALS_RECEIVED_FROM. These statements must be received from
all nodes who participate in a CHANGE_KEYS, and they must include
every such participating node. The statements are also checked for by
CHANGE_PRESENT to ensure that all nodes made present have partial
keys from all other nodes made present, which ensures that all necessary
RECEIVE_NEW_PARTICIPANT and NEW_PARTICIPANT_RECEIVEs have
completed for any PARTICIPATEed nodes.

§5 Templates, Template Types, &. Primitives

Input and output parameter passing mechanisms are described

which include constructed descriptions of hierarchically encrypted

data, and primitives for performing cryptographic operations on

data.

57

An unusually powerful parameter mechanism has been incorporated into

the specification language used here. for several reasons. First. it allows the

underlying structure of multiply encrypted messages to be shown clearly.

Second. it allows much of the routine checking and cryptographic transforma-

tions to be handled cleanly. and without complicating the rest of the algorithm

description unnecessarily. Third. the particular form used here can also provide

descriptive names. types, and sometimes values for the parts of parameters.

Templates

The basic syntax for the parameter description mechanism, called a tem-

plate, is shown in the following productions:

template name :construction
construction -+ * constructor-type <item-list> I

constructor-type <item-List>
constructor-type -+ signed I sealed I signatured
item e:q>ression = name : type I name :type I

expression = :type I name: I :type
item-list item-list, item I item
type simple-type I construction

The constructor types are covered in the next subsection. A * denotes a

part of a template, or an entire template, that is optional. The rules for when

the optional parts must appear in input, and when they are output are covered

in the subsection on template primitives. the names which may appear in a

template serve as the formal parameters. An item in a template may include an

expression. When an expression provides a value for an item in a template

describing input. the actual parameter supplied must have the identical value;

when an expression provides a value for an item in a template describing output.

the value provided is output.

56

Notice that all five non-empty possible combinations of the three com-

ponents of an item can be used in a template. One form of item is name :type .

It is the usual formal parameter when used for input, and is used to return the

value of the formal parameter (which must be of the specified type) in an output

template. Another form of item is ezpression = :type, which is used in an

input template to cause an initial "bad template" exception if the correspond-

ing input actual parameter does not have the value of the expression. It is used

in an output template to return a value for which a parameter name is not

needed. The most elaborate form is ezpression = name :type. It serves the

same function as the previous form, except that a parameter name is associated

with the value. When only a name is supplied, name:, the type and value are

obtained from another item with the same name. When only a type is supplied,

:type, the value of the parameter is ignored.

Several items or even whole templates in an D-function may share the same

name. Items with the same name must have the same value. Templates with

the same name are just different copies of the same template. The next section

contains a number of templates which may serve as instructive examples.

Tern plate Types

The three template types were shown in the formalism of the previous sub-

section as consLru.ctor-type. This subsection gives a detailed description of

each, but these descriptions are best taken together with those of the template

primitives of the following subsection.

59

signed

signatured

sealed

A digital signature of a structure of constituent elements. (See
the primitives sign. and check-signature.)
A collection of digital signatures of the same material. There
are several possible implementations of the notion of signa-
tured such as repeated encryption of a single bit string. indivi-
dually signed seperate copies of the same bit string. signatures
made on a compression of the matter to be or a combi-
nation of these approaches. It may also be desirable to expli-
citly include in the signatured some bits indicating who has
made each signature. (See the primitives sign and
check-signatured.) A signatured may also include timestamps
provided by the s ignat ories. (See the primitives
latest-signature and earliest-signature.)
An encrypted form of the constituent elements of a structure.
These should include a random component. as described in
Chapter II. (See the primitives seal and unseal)

Template Primitives

The following primitive functions are used to perform cryptographic

transformations on input and output of D-functions. Input parameters which are

included in a signatured signed or sealed construction must be the subject of a

check-signatured. check-signature or unseal primitive respectively if the con-

stituent items of the construction are to be accessed. Once the primitive is

applied. free use can be made of the items of the construction. The omission of

optional input constructions in an "actual parameter" (those marked by a ,.. in

the "formal parameter") which are the subject of check-signatured or

check-signature cause these primitives to return false. Optional output con-

structions are output if and only if their signed construction is the subject of a

sign primitive. Any signatured constructions appearing as input will be output

with an additional signature if they are the subject of a sign primative-even

though the construction name does not appear in an output section.

The following identity provides an example of some of the template primi-

tive functions. It simply asserts that sealing and signing are inverses when keys

created from the same seed are used.

60

if s = create-seed 0 then
m=unseal (seaZ(m, create-pubZir: (s», create-private (s»

The following are definitions of the template primitives:

sign (signed< a:llDY-type, ... >, k:private-key)
Optional output parameters are output iff their signed struc-

. ture is the subject of a sign primitive.

seaZ (sealed< a:llDy-type >, k:public-key)
Must be applied to any output structure that is of type sealed. if
that structure will be included in o-function output. The public
key k is used to perform the encryption.

unseal (sealed<a:any-type, ... >, k:private-key)
Makes accessible (but does not actually return) the unsealed,
i.e. un-encrypted, form of the input structure s iff s was the
output of an o-function which resulted from a seal primitive
applied with the public key corresponding to the private key k.

check-signature (s:signed<any-type· .. >, k:public-key) boolean
Checks the digital signature of the subject input structure s by
decrypting it with the public key k and checking for the redun-
dancy required by convention, and returns true iff the signa-
ture passes the test.

check-signatured (s: signatured<llDy-type ... >, k:set of public-key. m:integer)
boolean
Returns true iff a set of digital signatures of the subject input
structure s can be checked as having been formed by holders
of m private keys corresponding to m of the public keys con-
tained in the set of keys k (Le. 3p:set of public-key
l cardinality (P) = m /\ p C k /\ ""n:public-key l if n E: p then
check-signature (s, nH

latest-signature (s:signatured<any-type· .. >) time
Returns the most recent timestamp contained in the signatures
of s.

earliest-signature (s:signatured<llDy-type' .. >) time
Same as latest-signature except the time of the earliest.

61

§6 Synchronized D-functions

Presents the remainder of the specification language and uses it to

define the major D-functions of the proposed design.

The D-functions presented in this section define all the . synchronized

actions performed by the network. These allow for consensus by the nodes on

the state of the network, and implement all the changes in network status. Fig-

ure 1 shows the D-functions which change the status of individual nodes, such as

by certifying them into the network, removing nodes from the network, and res-

tarting a disabled node. The CHANGE_KEYS D-function of the figure allows a set

of nodes to each change their public keys and receive new partial keys from the

other nodes, once the new partials have been sealed with the receiving node's

new keys. One other D-function. not shown in the figure. has an impact on the

network status. It establishes the minimum values of important system parame-

ters.

Properties of the synchronization mechanism are demonstrated in Chapter

VII. For the present purposes, it is important to notice that synchronization is

provided by a cycle counter, CYCLE, maintained by each node. Each node can

perform the action of only one synchronized D-function call for each successive

cycle. A majority of present nodes must each sign a template which defines

every synchronized D-function call and the numbered cycle during which it is to

be performed. No node signs more than one template during a single cycle.

This arrangement ensures that nodes perform exactly the same D-function call

during each cycle number. In particular, the CONSENSVS_ V-FUNCTIONS of

all nodes in a particular cycle are guarantee to be identical.

Chapter II gave a description of three levels of trustees: trustees at level 1

are not in a position to compromise system security, but are able to perform

the day to day operations necessary to ensure the system's reliability: trustees

62

at level 2 establish policy and make security relevant decisions; trustees at level

3 are not part of the mechanism of this chapter, but are considered in Chapter

VII, as mentioned above. The present section is divided into those o-functions

callable by trustees at levell, and those callable by trustees at level 2. Before

any trustee level 2 o-function call can be made, however, it must be proposed:

the definition of the security relevant parts of the call must be included in a

trustee level 1 call to PROPOSE, which takes up one cycle. After this call has

been made, a delay of length cooling-off-interval is enforced before the trustee

level 2 action can be performed, by the corresponding trustee level 2 call. Any

other actions may occur during intermediate cycles, and the trustee 2 level call

can be blocked from ever occurring by the CANCEL_PROPOSAL synchronized 0-

function. The following two subsections provide the details of each of these two

kinds of synchronized o-functions. Before the o-functions can be presented,

however, the remainder of the specification language must be described.

G-junc tion Syntax a.nd Sema.ntics . o-functions are composed of five

major parts, roughly following the the structure put forward by Parnas [72]. For

the purposes of the present work, the simple input parameter list of the Parnas

notation has been extended into optional input and output parts, which use the

template mechanism described in the previous section. The third part of an 0-

function is merely for documentation. The fourth part lists a series of named

exception conditions, all of which are checked sequentially. If all the checks are

successful, then the effects part (the fifth part) is performed.

Some of the statements which make up the effects part are boolean expres-

sions. They have the effect of changing their constituent V-functions or formal

parameters to values which make the expression true. Other statements do not

return values, but rather are composed of primitive functions with side effects.

There is no implied sequential order of execution. All values of V-functions

within the effects part represent the value of the V-function after the entire 0-

63

function is completed. Those V-functions whose names are enclosed in single

quotes represent the value of the V-function before the call to the D-function.

The foliowing productions give the syntax of D-function definitions and their five

parts:

O-function -+ header input output comment exceptions effects
header input comment exceptions effects 1
header output comment exceptions effects
he ader -+ name: O-function
input -+ Input: template
output -+ Output: template
comment -+ Comment: wildcard
exceptions -+ Exceptions: exception-list

exception-list -+ exception-list ,exception 1 exception
exception -+ name: boolean-expression

effects -+ Effects: statement
statement -+ boolean-expression 1 !statement-list J 1

if boolean-expression then statement 1

if boolean-ex1)ression then statement else statement
with name [expression]statement

statement-list -+ statement-list, statement 1 statement
boolean-expression -+ boolean-expression 1

(boolean-expression) 1

boolean-primitive-function (expressio'TJrlist) 1

expression predicate expression 1
if boolean-expression then boolean-expression 1

if boolean-expression then boolean-expression
else boolean-expression

64

quantifier nClme :elementary-type fboolean-expression J 1

quantifier name :elementaT'lj-type
quantifier name :elementaT'lj-type fboolean-expression J

expression -+ name 1 'name 'I expression operator expression 1
(expression) 1 name [expression] 1

name [expre ssion] [expression] 1

let name = expression 1

with name [expression]expression 1

tion (expression-list)
expression-list -+ expressio'TJrlist, expression 1 expression

The keyword "let" is used to establish temporary variables within 0-

functions to avoid re-writing long expressions. The keyword "with" is used,

much as in some programming languages, to extend the qualification of a name

(in this case, a part of a construction selected by a particular index) over an

expression.

Trustee 2 D-functions

There are three trustee level 2 D-functions. The CERTIFY function is used

to bring new nodes into the network. as can be seen in Figure 1. This function is

critical to the security of the entire system because if sufficient corrupted or

even subverted nodes (see Chapter III) are brought into the network. then many

of the security measures are useless. It can also be used to establish and

modify a set. for each non-applied node. of nodes that the node can replace dur-

ing a restart. (This might be used in an application where some nodes have data

so sensitive that some vaults should never be able to access it.)

The SELMINIMA function is also very important. It establishes the

minimum margin (the significance of which is discussed in Chapter VII). the

minimum quorum of present nodes required for system operation. and the

amount of time a node will wait to participate before it erases its own secret. V-

function values. All three of these parameters determine the difficulty of the

various attacks which could be perpetrated against the system.

The final level 2 function is REMOVE_NODES. It simply allows nodes to be

taken out of the network. as illustrated in Figure 1.

One thing to notice about these function definitions is that some of the

latter exceptions and initial effects are the same. These common mechanisms

are used to establish synchronization. When one of these functions is called and

the ANNOUNCEMENT template does not have signatures from a majority of present

nodes (and the present node has not added its signature to an announcement of

the current cycle). then the node simply adds its signature to the announce-

65

ment and returns; when one such function is called and there are sufficient sig-

natures on the announcement. the node changes to phase 1 of the next cycle

and performs the required action. Thus. to perform a particular synchronized

action as a particular cycle. at least a majority of present nodes in phase 1 of

that cycle must first be called to obtain sufficient signatures on the desired

announcement. and then this announcement can be used in subsequent calls to

cause any node to perform the synchronized action.

The following are the detailed function definitions:

CERTIFY: o-function
Input:

ANNO UNCEMENT:signatured

<NODE_CERTIFIED :node-id
NODE_KEY: public-key.
APPLICATION_KEY:public-key.
NODES_RESTARTABLE:set of node-id
TRUSTEES-BUPPLYlNG:set of node-id
TRUSTEES _PARTIALS :table[node-id] of

TR USTEE_PARTIALS: sealed
<:table[node-id] of partial-key>.

PROPOSAL_CYCLE_II : integer.
CYCLE = CYCLE_# : integer,
COMPRESSED_HISTORY = :integer.
certify = :announcement-kind>.

PROPOSAL: signatured
< NODE_CERTIFIED : node-id
NODE_KEY: public-key.
APPLICATION_KEY:public-key,

NODES_RESTARTABLE:set of node-id
LATESLTIMESTAMP:time.

PROPOSALCYCLE_# :integer.
propose-certify = :proposal-kind>

Comment: The set of nodes the NODE_CERTIFIED is allowed to restart is
changed to NODES_RESTARTABLE. If the NODE_CERTIFIED node id is not in
NODES_IN_USE. then it becomes included in NODES_IN_USE. and the
NODE_KEY and APPLICATION_KEY parameters input are used to establish
table entries corresponding to the new node. All nodes change the set of
nodes the NODE_CERTIFIED is allowed to restart to NODES_RESTART ABLE . If a
node's own id appears in its NODES_RESTARTABLE then it is allowed to be

66

"

APPLYed. The NODE_CERTIFIED recovers the OWN_TRUSTEE_PARTIALS
that are needed by merging the TRUSTEEJ'ARTIALS input by a
trustee-2-quorum. The OWN_TRUSTEE_PARTIALS that are no longer
needed are erased.

Exceptions:
BAD_NODE_CERTIFIED: NODE_CERTIFIED € USED_NODE_IDS
PROPOSAL-HOTJ'ENDlNG: PROPOSAL_CYCLE_II It PROPOSALS_PENDING
INS UFFICIENT-TR USTEE_2-SIGNATURES: che ck-signrLture d,

(ANNOUNCEMENT_DEFINITION, trustee-2-publics, trustee-2-quorum)
INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\

SIGNATURES_OF_MAJORITY_OF_PRESENTS =
check-signrLtured,(ANNOUNCEMENT,
(if n € PRESENT then NODE_PUBLICS[nB L MAJORITY»

INSTANT_NOT_SIGNATORY: (k € ALL o WN_NODE_PUBLICS /\
check-signrLture (PROPOSAL, k)J

TOO_EARLY: now - LATEST-TIMESTAMP < cooling-off-interurLl
Effects:

if SIGNATURES_OF _MAJORITY_OF _PRESENTS then
(sign (ANNOUNCEMENT, NODE_PRIVATE), PHASE = 2J

else
PROPOSAL_CYCLE_# It PROPOSALS_PENDING,
CYCLE = 'CYCLE'+l,
PHASE = 1,
COMPRESSED_HISTORY =

compress('CONSENSUS_ V-FUNCTIONS '},
CERTIFICATION[NODE_CERTIFIED] = NODES_RESTARTABLE,
if NODE_CERTIFIED t 'NODES_IN_USE'then

(NODE_CERTIFIED E: NODES_IN_ USE,
APPLICATION_PUBLICS[NODE_CERTIFIED] = APPUCATION-KEY,
NODE_PUBLICS[NODE_CERTIFIED] = NODE_KEY,
LAST_CHANGES[NODE_CERTIFIED] = 0,
SUB-PARTIALS_REMAINING[NODE_CERTIFIED] =

if NODE_CERTIFIED = OWN_NODE then
(V'k:node-id(if k € TRUSTEES_SUPPLYING then

unsea.l(TRUSTEES'_PARTIALS[k], NODE_PRIVATEH,
V'r:node-id t if r € NODES_RESTART ABLE /\

r t 'CERTIFICATION'[OWN_NODE] then
OWN_ TR US TEE_PAR TIALS[r] = merge-PrLrtirLls (
t''O''k:node-idt if k E: TRUSTEES_SUPPLYING then

with TRUSTEES' _PARTIALS[k]

'o'n:node-id if n E: 'CERTIFICATION '[OWN_NODE] /\
nit NODES_RESTARTABLE then

OWN_TRUSTEE_PARTIALS[n] =

67

SET_MINIMA: G-function
Input:

ANNO UNCEMENT:signalured
<NEW_MINIM UM_QUOR UM:inleger,
NEW_MINIMUM_MARGIN:integer,
NE W _S UICIDE_INTERVAL :integer,
PROPOSAL_CYCLE_I :integer,
CYCLE = CYCLE_II :integer,
COMPRESSED_HISTORY = :integer,
set-minima = :announcement-ldnd>,

PROPOSAL : signatured
<NEW_MINIM UM_QUOR UM : integer,
NEW_MINIMUM_MARGIN:integer,
NEW _S UICIDE_INTERVAL :integer,
LATEST_TIMESTAMP:time,
PROPOSAL-CYCLE_II : integer,
propose-set-minima = :proposal-ki.nd>

Comment: The Y-functions holding the minimum values are changed to the
values of the corresponding parameters. The new minima must not be
larger than a possible current actual as opposed to minimum value.

Exceptions:
NEW_MINIMUM_MARGIN_TOO_SMALL: NEW_MINIMUM_MARGIN < 1
NEW_MINIMUM_MARGIN_TOO_BIG: NEW_MINIMUM_MARGIN> MARGIN
NEW_MINIMUM_QUORUM_TOO_BIG: NEW_MINIMUM_QUORUM> QUORUM
PROPOSAL-NOT_PENDING: PROPOSAL-CYCLE_II It PROPOSALS_PENDING
INS UFFICIENT _TR USTEE_2...SIGNATURES: check-signature d

(ANNO UNCEMENT _DEFINITION, truste e -2-publics, trustee -2-quorum)
INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\

(let SIGNATURES_OF _MAJORITY_OF _PRESENTS =
che ck -signature d (ANNO UNCEMENT, V n:node-id
t if n E: PRESENT then MAJORITY))

INSTANT-NOT-SIGNATORY: E: ALL_OWN_NODE_PUBLICS /\
check-signature (PROPOSAL, kH

TOO_EARLY: now - LATEST-TIMESTAMP < cooling-off-interual
Effects:

if then
NODE_PRIVATE), PHASE =

else l
PROPOSAL-CYCLE_I It PROPOSALS_PENDING,
CYCLE = 'CYCLE'+l,
PHASE = 1,
COMPRESSED_HISTORY =

compress('CONSENSUS_ V-FUNCTIONS '),

68

MINIMUM_QUOR UM = NEW_MINIMUM_QUORUM.

MINIMUM_MARGIN = NEW-MINIMUM_MARGIN.
S UICIDE_INT ERVAL = NEW_SUICIDEJNTERVAL i

REM OVE_N ODES: D--function
Input:

ANNOUNCEMENT;signatured

<NODES_TO_REMOVE;set of node-hI.
PROPOSAL-CYCLE_I ; integer.
CYCLE = CYCLE_If ;integer.
COMPRESSED_HISTORY = ;integer.
remove = ; announcement-kinci> ,

PROPOSAL;signatured
<NODES_TO_REMOVE;set of node-id
LATEST_TIMESTAMP;time,
PROPOSAL-CYCLE_1f ; integer.
propose-remove = ;proposal-kind>

Comment: The node ids of the NODES_TO_REMOVE are removed from
NODES_IN_USE, and all secret table entries for the NODES_TO_REMOVE are
erased. The removed nodes commit suicide.

Exc eptions:
NO_SUCH_NODE_IN_USE; -.NODES_REMOVED C NODES_IN_ USE
REMOVING_PRESENT; 3n:node-id fn E: NODES_REMOVED /\ n E: PRESENT
PROPOSAL_NOT_PENDING; PROPOSAL_CYCLE_I t PROPOSALS_PENDING
INS UFFICIENT _TR USTEE_2....SIGNATURES: -. che ck -signature d

(ANNOUNCEMENT_DEFINITION, trustee-2-publics, trustee-2-quorum)

INSTANT-ALREADY_SIGNED-AHNOUNCEMENT: PHASE = 2/\
-.(let SIGNATURES_OF_MAJORITLOF_PRESENTS =

check-signatured (ANNOUNCEMENT,
f if n E: PRESENT then MAJORITY»

INSTANT_NOT_SIGNATORY: -.3K:public-key fk E: ALL_OWN_NODE_PUBLICS /\
check-signature (PROPOSAL,

TOO_EARLY: now - LATEST-TIMESTAMP <
Effects:

if ..,SIGNATURES_OF_MAJORITY_OF_PRESENTS then
tsign(ANNOUNCEMENT, NODE_PRIVATE), PHASE = 2i

else t
PROPOSAL-CYCLE_II t PROPOSALS_PENDING,
CYCLE = 'CYCLE'+l,
PHASE = 1,
COMPRESSED_HISTORY =

compress('CONSENSUS_ V-FUNCTIONS '},

69

NODES_IN_USE = 'NODES_IN_USE' - NODES_TO_REMOVE,

USED_NODE_IDS = 'USED_NODE_IDS' U NODES_TO-REMOVE,

APPLIED = 'APPLIED' - NODES_TO_REMOVE,

'V'n:node-id if n e: NODES_TO_REMOVE then
= erased,

'V'i:integer if 1 SUB-PARTIALS_REMAINING[n] then
lSUB-PARTIALS[n][i] = erasedBB

if OWN_NODE e: NODES_TO_REMOVE then suicide (oH

Trustee 1 o-functions

The PROPOSE and CANCEL_PROPOSAL functions were discussed above as

they cross over the boundary between trustee levelland trustee level 2. The

remaining functions covered in this section are illustrated in Figure 1.

The APPLY function takes any suitably certified node in a "veteran" state

(Le. a node that has been present before), and makes it "applied," that is dedi-

cates it to a particular application and disqualifies it from being the replacing

node in a restart. The CHANGE_PRESENT function transfers nodes between the

present and participated states, and also may change the current majority. The

RESTART function was touched on in Chapter IV, and is simply a way for a

replacing node to resume the application processing of the disabled replaced

node. The PARTICIPATE function can be used to transfer a single node from

some state outside the participated state to the participated state, an effect

which is usually achieved by a key change.

The remaining two functions are related. First, the CREATE_KEYS function

is called and results in each node forming a new set of keys, and outputting the

appropriate public keys. These public keys are then used in conjunction with

un-synchronized G-functions, described in the following section, to distribute

new partial and sub-partial keys among the nodes hoping to participate in the

key change. Other synchronized G-functions may be taking place while these

70

keys are exchanged. Finally. during some later cycle. the CHANGE_KEYS 0-

function is called. It defines the new set of participated nodes and causes all

business of the network to be conducted under the new keys.

Again. there are common exceptions and parts of the effects which provide

synchronization. The function definitions are as follows:

PROPOSE: o-function
Input:

ANNO UNCEMENT JJEFINITION:signatured

Output:

<PROPOSALDEFINITION:

* < NODE_CERTIFIED :node-id.
NODE_KEY: public-key,
APPLICATION_KEY:public-key.

NODES_RESTARTABLE:set of node-id>.
* <NEW_MINIMUM_QUOR UM:integer.
NEW_MINIMUM_MARGIN:integer.
NEW -SUICIDE_INTERVAL :integer>.
* < NODES_TO_.REMOVE:s et of node-id>.

KIND_OF _PROPOSAL: proposal-kind.
CYCLE = CYCLE_Ii :integer.
COMPRESSED_HISTORY = :integer.
propose = :action-kind>.

PROPOSAL : signed
<PROPOSAL_DEFINITION:.
LATEST-TIMESTAMP:time.
'CYCLE I = CYCLE_Ii :intcger.
KIND_OF_PROPOSAL:proposal-kind>

Comment: A Signed copy of a definition of the proposed action. PROPOSAL. is
output which includes the latest single timestamp of the quorum of nodes
signing the announcement.

Exceptions:
INS UFFlCIENT _TR USTEE_LSIGNATURES: che ck -signature d.

(ANNOUNCEMENT, trustee-I-publics, trustee-I-quorum)
INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\

Effects:

(let SIGNATURES_OF_MAJORITY_OF_PRESENTS =
check-signatured. (ANNOUNCEMENT_DEFINITION, l'v'n:node-id

l if n E: PRESENT then NODE_PUBLICS[n]B. MAJORITY))

71

if then
PHASE =

else i
CYCLE = 'CYCLE'+l,
PHASE = 1,
COMPRESSED_HISTORY =

compress('CONSENSUS_ V-FUNCTIONS '),
CYCLE_* e: PROPOSALS_PENDING.
LATEST_TIMESTAMP = latest-signature (ANNOUNCEMENT_DEFINITION).
sign(PROPOSAL, NODE_PRIVATEH

CANCEL_PROPOSAL: o-function
Input:

ANNOUNCEMENT_DEFINITIoN:signatured
<PROPOSALS_TO_CANCEL:set of integer.
CYCLE = CYCLE_* :integer.
COMPRESSED_HISTORY = :integer.
cancel = :action-kind>

Comment: The PROPOSALS_TO_CANCEL are removed from
PROPOSALS_PENDING and therefore can no longer be used.

Exceptions:
BAD_PROPOSALS: -PROPOSALS_TO_CANCEL !: PROPOSALS_PENDING
INS UFFICIENT _TR USTEE_LSIGNATURES: - check-signature d

(ANNOUNCEMENT, truste e-1-publics. trustee-1-quorum)
INSTANT-ALREADY-SIGNED-ANNOUNCEMENT: PHASE = 2/\

Effectsi

- (let SIGNATURES_OF _MAJORITY_OF _PRESENTS =
check-signatured (ANNOUNCEMENT_DEFINITION, ("v"n:node-id

(if n e: PRESENT then L MAJORITY»

if -SIGNATURES_OF_MAJORITY_OF_PRESENTS then
tsign(ANNOUNCEMENT-DEFINITION), PHASE =

else (
CYCLE = ·CYCLE'+l.
PHASE = 1.
COMPRESSED_HISTORY =

c ompress('CONSENS US_ V-FUNCTIONS '),
PROPOSALS_PENDING = PROPOSALS_PENDING -

72

APPLY: G-function
Input:

ANNOUNCEMENLDEFINITION:signatured
<NODES_TO-APPLY:set of node-id.
CYCLE = CYCLE_II :integer,
COMPRESSED_HISTORY= :integer,
apply = :action-kind>

Comment: The identified node(s) are added to APPLIED. and all their
certification is removed. They expunge their own set of trustee partials.
The subject nodes can now adopt an application. and can no longer be
used as the replacing node in a restart.

Exc eptions:
BAD_NODES: C NODES_IN_USE
ALREADY_APPLIED : .3n:node-i.d tn E: NODES_TO_APPLY /\ n E:

INADEQUATE_CERTIFICATION: 3n:node-id tn E: NODES_TO-APPLY /\
n fl CERTIFICATION[n]

INSUFFICIENT_TRUSTEE_LSIGNATURES :
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum)

INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\
(let SIGNATURES_OF_MAJORITY_OF_PRESENTS =

che ck-signatured (ANNOUNCEMENT_DEFINITION, tV'n;node-i.d
ifn E: PRESENT then NODE_PUBLICS[n]B, MAJORITY»

Effects:
if then

fsign(ANNOUNCEMENT_DEFINITION), PHASE =
else t
CYCLE = ·CYCLE'+l.
PHASE = 1,
COMPRESSED_HISTORY =

compress('CONSENSUS_ V-FUNCTIONS '),
V'a:node-id t if a E: NODES_TO-APPLY then CERTIFICATION[a] = empty l.
if OWN_NODE E: NODES_TO-APPLY then V'n:node-i.d

ifn E: CERTIFICATION[OWN_NODE] then
OWN_TRUSTEE_PARTIALS[n] = erasedl.

APPLIED = 'APPLIED' U NODES_TO-APPLY!

CHANGE_PRESENT: G-function
Input:

ANNO UNCEMENT JJEFINITION:signatured
<NODES_TO_BECOME_PRESENT:set of node-id.
NODES_TO_BECOME-ABSENT:set of node-id.
NErCMAJORITY:integer,

73

CYCLE = CYCLE_# :integer,
COMPRESSED_HISTORY = :integer,
change-presents = :action-kind>

MINIM UM_PARTIALS_RECEIVED : signatured
<KEY_CREATION_# = :integer.
NODES_RECEIVED-FROM: se t of node-id
partials-Teceived = :transfer-kind>

Output:
*SUB-PARTIALS_RELEASED:set of partial-key

Comment: The nodes to be made present are made present, the nodes to be
made absent are made absent, and the majority assumes the new value
provided. The new configuration must be compatible with the
MINIMUM_MARGIN, and the QUORUM. The MINIMUM_PARTIALS_RECEIVED
signed by the NODES_TO_BECOME_PRESENT ensure that the nodes made
present have received all the partial keys they may require. If the
NEW_MAJORITY is less than the current quorum, but not less than the
minimum quorum, then sub-partials are publicly released so that the
effective quorum is lowered to the NEW_MAJORITY.

Exceptions:
NEW_MAJORITY_TOO_SMALL: NEW_MAJORITY < MINIMUM_QUORUM
NEW_MAJORITY_TOO_BIG: NEW_MAJORITY> (let NEW_NODE_COUNT =

cardinality(PRESENT) + cardinality (NODES_TO_BECOME-PRESENT) -
cardinality (NODES_TO_BECOMK.ABSENT»

NEW_MAJORITY_TOO_SMALL: MINIMUM_QUORUM> NEW_MAJORITY
INSUFFICIENT_MARGIN: NEW_NODE_COUNT >

(NEW_MAJORITY x 2) - MINIMUM_MARGIN
NOT-ABSENT: ABSENT
NOT-PRESENT: NODES_TO_BECOME-ABSENT !;: PRESENT
INS UFFICIENT _MINIM UM_PARTIALS_RECEIVED_FROM_SIGNATURES:

check-signatured (MINIM UM_PARTIALS_RECEIVED,
NODE_PUBLICS [(PRESENT U NODES_TO_BECOME-PRESENT)-

NODES_ TO_BECOME_ABSENT] ,
NEW_NODE_COUNT)

INS UFFICIENT _MINIM UlLPARTIALS_RECEIVED_FROM: 3 n:node-id
(n E: NODES_TO_BECOME_PRESENT /\
n t NODES_RECEIVED_FROM

INS UFFICIENT -E UB -PARTIALS:
3n:nodc-id E: NODES_IN_ USE /\ 3i:integer
lLAST_CHANGES[n] = i/\
SUB-PARTIALS_REMAINING[n] < QUOR UMS [i]-NEW_MAJORITYj

INS UFFICIENT_TR USTEE_LSIGNATURES:
(ANNOUNCEMENT, trustee-I-pUblics, trustee-I-quorum)

INSTANT....ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\
SIGNATURES_OF_MAJORITY_OF_PRESENTS =

check-signatured(ANNoUNCEMENT_DEFINITION, ('Vn:node-id
l ifn E: PRESENT MAJORITY»

74

Effects:
if SIGNATURES_OF _MAJORITY_OF -PRESENTS then

(sign (ANNOUNCEMENTJJEFlNITION) , PHASE = 2J
else
CYCLE = 'CYCLE'+l,
PHASE = 1.
COMPRESSED_HISTORY =

c ompress('CONSENS US_ V-FUNCTIONS '),
PRESENT = ('PRESENT'-NODES_TO-BECOME-ABSENT) U

NODES_TO_BECOME_PRESENT.
MAJORITY = NEW_MAJORITYJ
if MAJORITY < QUORUM then 'o'n:node-id

(if n NODES_IN_ USE 1\ (let NS_QUORUM =
QUORUMS[LAST_CHANGES[n]]) > NEW_MAJORITY then

HSUB-PARTIALS_REMAINING[n] =
'SUB -PARTIALS_REMAINING'[n]-

NS_QUORUM-NEW_MAJORITYJ.
fV'i. int.eger l if NS_QUORUM < NEW_MAJORITY then
S UB - PAR TIALS[n]

['SUB-PARTIALS_REMAINING'[n]-i-
NEW_MAJORITY] SUB-PARTIALS_RELEASEDB B

RESTART: D-funct.ion
Input:

ANNO UNCEMENT -DEFINITION: signatured
<REPLACED_NODE :node-id
REPLACING_NODE :node-id

Output:

CHECKPOINT: (see ISSUE_CHECKPOINT).
CYCLE = CYCLE_# :integer,
COMPRESSED_HISTORY = : integer.
restart = :action-kind>

* PARTIAL-FOR-ASSUME_APPLICATION:signed
<REPLACED_NoDE:node-id
REPLACING-HODE :node-id
PARTIAL_SUPPLIED:sealed<partial.-key>.
RESTART_to_ASSUME_APPLICATION = :transfer-kind>

Comment: The replaced node, which must be applied and not present, is in
effect REMOVE_NODESed. The replacing node must be certified to
replace the replaced node. and it becomes applied. The replacing node is
supplied with partials for the replaced node. These are used in
ASSUME_APPLICATION to recover the replaced node's application data
and messages sent after the last checkpoint.

75

Exceptions:
BAD_REPLACED_NODE: REPLACED_NODE e: PRESENT V

REPLACED_NODE t NODES_IN_ USE
BAD_REPLACEMENT_NODE: REPLACING_NODE PARTICIPATED

REPLACING_NODE e: APPLIED
INADEQUATE_CERTIFICATION: REPLACED_NODE t.

CERTIFICATION[REPLACING_NODE]
INSUFFICIENT_TRUSTEE_L..8IGNATURES; -check-signatured

(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum.)

INSTANT-.ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\

EtIects:

-(let SIGNATURES_OF_MAJORITY_OF_PRESENTS =
check-signatured (ANNOUNCEMENT_DEFINITION,

ifn e: PRESENT then NODE_PUBLICS[n]n, MAJORITY»

if - SIGNAT URES_ OF _MAJORITY_ OF _PRESENTS then
(sign (ANNOUNCEMENT_DEFINITION), PHASE =

else
CYCLE = 'CYCLE'+l,

PHASE = 1.
COMPRESSED_HISTORY =

compress('CONSENSUS_ V-FUNCTIONS '),
REPLACED_NODE t. NODES_IN_ USE.
REPLACED_NODE e: USED_NODE_IDS,

APPLICATION_PUBLICS[REPLACING_NODE] =
APPLICATION_PUBLICS[REPLACED-NODE],

REPLACING_NODE e: APPLIED,
REPLACED_NODE t. APPLIED,
PARTIAL_KEYS[REPLACED_NODE] = erased.

'Vi:integer t if 1 SUB -PARTIALS_REMAINING[n] then
tSUB-PARTIALS[REPLACED_NODE][i] =

PARTIAL-BUPPLIED = 'PARTIAL_KEYS'[REPLACED_NODE],
seal (PARTIALS UPPLIED, NODE_P UBLICS [REPLACING_NODE]).
sign'(PARTIALFOR-ASSUME_APPLICATION, NODE_PRIVATE),

if OWN_NODE = REPLACING_NODE then
ifn e: CERTIFICATION[REPLACING_NODE] then

OWN_ TRUSTEE_PARTIALS[n] = erased B,
if OW N_N ODE = REPLACED_NODE then suicide (OH

76

PARTICIPATE: D-function
Input:

ANNO UNCEMENLDEFINITION:signatured
<NODE_PARTICIPATED :node-:id
NODES_RECEIVED_FROM:set of node-:id
PARTIALS_ALREADY-RECEIVED:signatured

Output:

<KEY- CREATION_# = : integer.
NODES_RECEIVEDJ'ROM:set of node-:id
partialsJT'eceived = :transfer-kind>.

CYCLE = CYCLE_II :integer.
COMPRESSED_HISTORY = :integer.
participate = :action-kind>

* SUB-PARTIALS_S UPPLlED:signed
< CYCLE = CYCLE_# :integer.
SUB-PARTIALs:sealed<:table[node-:id] of partial-key>.
PARTICIPATE_to_NEW_PARTICIPANT_RECEIVE = :

transfer-kind>
*PARTIALS-AND_SUB-PARTIALs:table[PARTICIPATED] of

PARTIAL-AND_SUB -PARTIALS : signed
<RECIPIENT:node-id
PARTIAL: sealed< partial-key>.
NUMBER_OF_SUB-PARTIALS:integer.
SUB-PARTIALs:sealed<table[integer] of partial-key>.
PARTICIPATE_to_RECEIVE_NEW_PARTICIPANT = :

transfer-kind>
Comment: Participated nodes each supply the node to be participated with

sub-partials of every node for which the node to be participated is miss-
ing partial keys. The node to be participated issues partials and sub-
partials for itself to all the participated nodes, just as in issue-partials.
Two unsynchronized D-functions are allowed:
RECEIVE_NEW_PARTICIPANT for the participated nodes to pick up their
partials and sub-partials (not as new). and NEW_PARTICIPANT-RECEIVE
for the entering node to pick up a set of sub-partials.

Exceptions:
BAD-.NODE.J'ARTICIPATED: NODE.J'ARTICIFATED E: PARTICIPATED V

NODE_PARTICIPATED t NODES_IN_ USE
INSUFFICIENT_SUB-PARTIALS: E: NODES_IN_ USE /\

LAST_CHANGES[NODE_PARTICIPATED] < LAST_CHANGES[n] /\
SUB-PARTIALS_REMAINING[n] <

BAD-ALREADY_RECEIVED_FROM_SIGNATURES: check-signatured
(PARTIALS-ALREADLRECEIVED.
NODE_PUBLICS[NODES_RECEIVED_FROM] U

NODE_PUBLICS [OWN_NODE].
cardinality(NODES_RECEIVED_FROM+l})

77

INSUFFlCIENT_TRUSTEE_LSlGNATURES:
(ANNOUNCEMENT, trustee-l-quorum)

INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\

Effects:

SIGNATURES_OF_MAJORITY_OF_PRESENTS =
check-signatured.(ANNOUNCEMENT_DEFlNITION, t'dn:node-id

t if n e: PRESENT then NODE_PUBLICS[n]B. MAJORITY»

if then
tsign(ANNOUNCEMENT-DEFINITION), PHASE =

else
CYCLE = 'CYCLE' + 1.
PHASE = 1.
COMPRESSED_HISTORY =

compress('CONSENSUS_ V-FUNCTIONS ').
SUB-PARTIALS_REMAINING[NODE_PARTICIPATED] =

NUMBER_OF_SUB-PARTIALS.
if 3n:node-id!n e: NODES_IN_ USE /\

LASLCHANGES[NODE_PARTICIPATED] < LAST_CHANGES[n] then
SUB-PARTIALS_REMAINING[n] =

'SUB
if NODEYARTICIPATED #- OWN_NODE then

('d
p:node-id I if P e: PARTICIPATED /\p t. NODES_RECEIVED_FROM then

(SUB-PARTIALS[P] =
SUB -PARTIALS[p]['SUB -PARTIALS_REMAINING'[P]].

else

seal(SUB-PARTIALS[P]'
sign(SUB-PARTIALS-SUPPLIED,

I'd
p:node-id I ifp e: PARTICIPATED /\p t. NODES_RECEIVED_FROM then

PARTIALS-AND_SUBPARTIALS[P]
= p,

PARTIAL = forrrtJpartial (p, PARTIAL-SEED,
APPLICATION_PRIVATE,
QUORUM).

seal(PARTIAL , NODB_PUBLICS[P]).
'di:integer I if 1 NUMBER_OF_SUBPARTIALS then

ISUB-PARTIALS[i] = for'TTU-partial(
p, PARTIAL_SEED ,
form-partial(i, PARTIAL_SEED,

APPLICATION_PRIVATE,
QUORUM),

QUORUM)
seal (SUB-PARTIALS, NODE_PUBLICS[P]])B

sign(PARTIALAND-SUB-PARTIALS, NODE_PRIVATE)L.

76

suicide «earliest-signature (ANNOUNCEMENT_DEFINITION) +
SUICIDE_INTERVAL) -nowOHB

CREATE_KEYS: o-function
Input:

ANNOUNCEMENT-DEFINITION:signatured

Output:

<NEW_QUORUM:integer.
NEff-SUB-PARTIALS_NEEDED:table[NODES_IN_USE] of integer.
CYCLE = CYCLE_# :integer,
COMPRESSED_HISTORY = : integer,
create-keys = :action-kind>

NEff-KEYS: signed
< KEY_ CREATION_II = :integer.
NEW -APPLICATION_PUBLIC:public-key,
NEW_NODE_PUBLlC:public-key.
CREATE_KEYS_to_ISSUE_NEW_PARTIALS&CHANGE_KEYS = :

transfer-kind>
EXTENDERS:table[integer] of

EXTENDER: signed
<KEY_CREATION_# = :integer.
INDEX: integer.
EXTENSION:sealed<table[integer] of partial-key>.
CREATE_KEYS_to_NEW_PARTICIPANT_RECEIVE = :

transrer-kind>
Comment: New node and application keys are created. Also a new seed for

the new partial keys, which will use the new quorum, is created. The ini-
tial number of sub-partials needed for each node is recorded. New pub-
licsare output. The issue new partials and receive new partials unsyn-
chronized actions are allowed. This action may occur more than once to
change the new quorum. even though no change to new keys has
occurred. The set of nodes the instant node would allow to become parti-
cipated in a CHANGE_KEYS is emptied. If a node is to become partici-
pated but lacks partials for some other node which is not going to be par-
ticipated, then the first node must be the subject of a PARTICIPATE
before a CHANGE_KEYS.

Exceptions:
NEW_QUORUM_TOO_SMALL: NEW_QUORUM < MINIMUM_QUORUM
INS UFFICIENT_TRUSTEE_LSIGNATURES: check-signature d

(ANNOUNCEMENT, trustee-l-publics. trustee-l-quorum)
INSTANLALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\

(let SIGNATURES_OF _MAJORITY_OF _PRESENTS =
check-signatured (ANNOUNCEMENT_DEFINITION, l"<::tn:node-id

l ifn e: PRESENT then NODE_PUBLICS[n]B, MAJORITy)

79

Effects:
if then

PHASE =
else l
CYCLE = 'CYCLE'+l,
PHASE = 1,
COMPRESSED_HISTORY =

compress('CONSENSUS_ V-FUNCTIONS '),
KEY_CREATION_# = 'KEY_CREATION_# '+1,
QUORUMS[LAST_CHANGE + 1] = NEW_QUORUM,
PARTIALS_RECEIVED_FROM = empty,
APPLICATION-SEED = create-seed O.
NEW_APPLICATION_PRIVATE = (APPLICATION-SEED).
NEW_APPLICATION_PUBLIC = create-public (APPLICATION_SEED),
NODE_SEED = create-seedO,
NEW_NODE_PRIVATE = (NODE-SEED),
NEW_NODE_PUBLIC = (NODE-BEED) ,
PARTIAL_SEED =
NEW_SUB-PARTIALS_REMAINING = NEW-SUB-PARTIALS_NEEDED.
'\;fi:integer

l if 1 < i!5; NEW_SUB-PARTIALS_REMAINING[OWN_NODE] then
'\;f J:integer l if 1 < J < i then

lwith EXTENDERS[i]
lINDEX = i.
EXTENSION[J] = Jorm-partial(

i, PARTIAL-SEED,
(J, PARTIAL_SEED,
NEW_APPLICATION_PRIVATE,
QUORUMS[LAST_CHANGE + 1]).

QUORUMS[LAST_CHANGE + l])lB
seal(EXTENSION, create-public

(i, PARTIAL_SEED, NEW_APPLICATION_PRIVATE,
QUORUMS[LAST_CHANGE + 1])),

sign (EXTENDER , NEW_NODE_PRIVATE)l

CHANGE_KEYS: o-function
Input:

ANNO UNCEMENT _DEFINITION : signatured
<NODES_PARTICIPATlNG:set of node-id,
EVERY-PARTICIPANTS_NEW_KEYS:table[node-id] of --NEW_KEYS_FROM_CREAT E_KEYS : signed

BO

<KEY_CREATION_# = :integer.
NEW-APPLICATION_PUBLIC:public-key.
NE W _NODE_PUBLIC:public-key,
CREATE_KEYS_to_ISSUE_NEW_PARTIALS8&CHANGE_KEYS = :

transfer-kind>
CYCLE = CYCLE_# :integer.
COMPRESSED_HISTORY = :integer,
change-keys = :action-kind>

MINIM UM_PARTIALS-RECEIVED :signatured
<KEY- CREATION_# = :integer.
NODES_RECEIVED_FROM: se t of node-id
partials-received = :transfer-kind>

Comment: The new keys, partials and sub-partials for all the included nodes
are changed to their new values that have previously been supplied.
(Contlict between the supplied publics and any publics already received
are ignored because this causes no real security problem, and if the 0-
function were blocked by a confiict, a single node could deadlock the sys-
tem.) The new keys, partials, and sub-partials for all un-included nodes,
except the present node, are erased. The set of participated nodes is
changed to the included nodes.

Exceptions:
INSUFFICIENTYARTICIPATION: PRESENT C NODES_PARTICIPATING
BAD_PARTICIPANTS: C NODES_IN_ USE
INVALID_NEW_KEYS: 3n:node-id E: NODES_PARTICIPATING /\

check-signature (EVERY_PAR TICIPANTS_NEW_KEYS[n],
NODE_PUBLICS [n])

PARTICIPANTS_LAClLNON - PARTICIPANT S_PARTIALS:3p, n:node-id
lP E: NODES_PARTICPATING /\
n E: (NODES_IN_USE-NODES_PARTICIPATING) /\
LAST_CHANGES[P] <

INSUFFICIENT_MINIM UM_PARTIALS_RECEIVED_FROM_SIGNATURES:

NODE_PUBLICS [NODES_PARTICIPATING].
cardinality (NODES_PARTICIPATING»

INS UFFICIENT _MINIM UM_PARTIALS_RECEIVED_FROM:
NODES_PARTICIPATING C NODES_RECEIVED_FROM

NEW_QUORUM_TOO_BIG: QUOR UMS [LASL CHANGE + 1] > MAJORITY
INSUFFICIENT_TRUSTEE_LSIGNATURES: check-signatured

(ANNOUNCEMENT, trustee-l-publics, trustee-i-quorum)
INSTANT-ALREADY_SIGNED-ANNOUNCEMENT: PHASE = 2/\

Effects:

SIGNATURES_OF_MAJORITY_OF_PRESENTS =
check-signafured(ANNOUNCEMENT_DEFINITION,

if n E: PRESENT then NODE_PUBLICS[n]B. MAJORITY»

if then
PHASE =

81

else I
CYCLE = ·CYCLE'+l.
PHASE = 1.
COMPRESSED_HISTORY =

c ompress('CONSENS US_ V-FUNCTIONS '),
PARTICIPATED = NODES_PARTICIPATING,

QUORUM = QUORUMS[LAST_CHANGE + 1],
SUB-PARTIALS_REMAINING = NEW_SUB-PARTIALS_REMAINING,
NODE_PUBLICS[OWN_NODE] e: ALL o WN_NODE_P UBLICS ,
PARTIALS_RECEIVED_FROM = NODES-PARTICIPATING.

'QI'p:node-id if P e: PARTICIPATED then
EVERY_PARTICIPANTS_NEW_KEYS [P]

tAPPLICATION_PUBLICS[P] = NE',LAPPLlCATION-PUBLlCJ,

NODE_PUBLICS[P] = NEW-HODE-PUBLICJ,

PARTIAL_KEYS[p] = NEW_PARTIALKEYSfp],
'QI'i:integer if 1 NEW_SUB-PARTIALS_REMAINING[P] then

SUB -PARTIALS[P][i] = NEW_SUB -PARTIALS[P][i]B,
suicide «earliest-signature (ANNOUNCEMENT-DEFINITION) +

SUICIDE_INTERVAL) - nowO)J

§7 Un-Synchronized O-functions

Presented are the remaining o-functions, which support the 0-

functions of the previous section and allow release of information.

The previous section was concerned with synchronized o-functions, which

are designed in such a way that every node will accept only the same sequence

of calls and in the same order. The present section is concerned with the other

o-functions: those which can be invoked in many possible orders. The fact that

they can be used in a less structured way than those previously discussed does

not mean that these o-functions are an invitation to chaos. On the contrary,

some of these o-functions provide increased reliability and robustness of the

network even in spite of the trustees. Others of these o-functions have no effect

on a node's state, and are merely used to obtain signed and possibly sealed data

about the nqde's state. Yet others are tied directly into the synchronized 0-

82

functions. and merely act as extensions of these D-functions to allow additional

rounds of information exchange.

Synchronized o-function Support

This subsection defines five un-synchronized D-functions. The first two are

used between the initial CREATE_KEYS and the closing CHANGE_KEYS. as

described in the previous section. The first of these. ISSUE_NEW_PARTIALS.

takes as input the new public keys of a node released during CREATE_KEYS and

outputs partial keys and sub-partial keys sealed with the new public key

received. The second D-function. RECEIVE_NEW_PARTIALS. takes as input the

output of this first D-function created by another node and simply records the

partials and sub-partials after unsealing with its new private key.

A second pair of D-functions serves a similar purpose. but is used following a

PARTICIPATE D-function call. One D-function. RECEIVE_NEW_PARTICIPANT. is

used by all but the node to be participated. and simply records the public. par-

tial, and sub-partial keys released by the subject node during the PARTICIPATE.

The other D-function of the pair. NEW_PARTICIPANT_RECEIVE. is used by the

subject node to collect the sub-partials and extenders provided it by the non-

subjects during the PARTICIPATE. The fifth and final D-function,

ASSUME_APPLICATION. allows the replacing node of a restart to assume the

application key of the replaced node.

The following are the unsynchronized supporting D-functions:

83

ISSUE_NEW_PARTIALS:D-function
Input:

SUPPLIER :node-id.
NEW_PUBLICS: signed

Output:

< KEY_ CREATION_# = :integer.
S UPPLIER-.NE W_NODE_PUBLIC:public-key.

CREATE_KEYS_to_ISSUE_NEW_PARTIALS&CHANGE_KEYS = :
transfer-kind>

PARTIAL-AND_SUB -PARTIALS : signed
< KEY_ CREATION_# =:integer.
SUPPLIER :node-id.
PARTIAL:sealed<:partial-k:ey>.
SUB -PARTIALS:sealed< :table[integer] of partial-k:ey>.
ISSUE_NEW_PARTIALS_to_RECEIVE_NEW_PARTIALS = :

transfer-kind>
Comment: The supplied new public application key is used to seal the partial

and the number of sub-partials for each node established in
CREATE_KEYS.

Exceptions:
INVAliD_SUPPLIER: SUPPLIER t NODES_IN_ USE.
INVALID_SUPPLIER_SIGNATURE: check-signature (NEW_PUBLICS.

NODE_PUBLICS (S UPPLIER») ,
Effects:

PARTIAL = form-partial(SUPPLIER, PARTIAL_SEED.
NEW_APPLICATION_PRIVATE. QUORUMS[LAST_CHANGE + 1]),

seal(PARTIAL. SUPPLIER_NEW_NODE_PUBLIC),
V'i:integer

f if 1 NEW_SUB-PARTIALS_REMAINING[OWN_NODE] then = form-partial
(SUPPLIER. PARTIAL_SEED.

form-partial(i. PARTIAL_SEED.
NEW_APPLICATION_PRIVATE.
QUOR UMS[LASL CHANGE + 1]).
QUORUMS[LAST_CHANGE +

sealeS UB-PARTIALS. SUPPLIER_NEW-HODE_PUBLIC),
sign (PARTIAL-AND_S UB -PARTIALS , NODE_PRIVATE)

84

Input:
SUPPLIER :node-id.
PARTIAL-AND_SUB-PARTIALs:signed

< KEY_ CREATION_# = : integer.
OWN_NODE:node-id.
PARTIAL:sealed<:partial-key>.
SUB-PARTlALs:sealed<:table[integer] of partial-key>.
ISSUE_NEW_PARTIALS_to_RECEIVE_NEW_PARTIALS = :

transfer-kind>
Comment: The new partials and sub-partials output by

ISSUE_NEW_PARTIALS are recorded.
Exceptions:

INVALID_SUPPLIER:SUPPLIER t NODES_IN_USE
INVALID_SUPPLIER-BIGNATURE: check-signature

(PARTIAL-AND-BUB-PARTIALS. NODE_PUBLICS[SUPPLIERJ)
Effects:

unseal (PARTIAL. NEW_APPLICATION_PRIVATE).
NEW_PARTI.ALKEYS[SUPPLIER] = PARTIAL.
unseal (SUB-PARTIALS. NEW_APPLICATION_PRIVATE)
'di:integer f if 1 NEW_SUB-PARTIALS_REMAINING[SUPPLIER] then

NEW_SUB-PARTIALS[SUPPLIER][i] = SUB-PARTIALS[i]J.
SUPPLIER e: PARTIALS_RECEIVED_FROM.

Input:
NODE_BECOMINGJARTICIPATED:node-id
PARTIAL-AND_SUB-PARTIALs:signed

< OWN_NODE = RECIPIENT:node-id
PARTIAL:sealed<:partial-key>.
NUMBER_OF _S UB-PARTIALS :integer.
SUB-PARTIALs:sealed<:table[integer] of partial-key>.
PARTICIPATE_to_RECEIVE_NEW_PARTICIPANT = :

transfer-kind>
Comment: The participated nodes making an additional node participated

are allowed to use this D-function to record the partials and sub-partials
issued to them by the entering node during the BECOMEJARTICIPATED.

Exceptions:
BAD-BIGNATURE: check-signature

(PARTIAL-AND_S UB-PARTIALS.
NODE_PUBLICS [NODE_BECOIlING_PARTICIPATED J)

85

Effects:
unseal (PARTIAL, APPLICATION_PRIVATE),
PARTIAL_KEYS[NODE_BECOMING-PARTICIPATED] = PARTIAL,
lunseal(SUB-PARTIALS, APPLICATION_PRIVATE)
'\;fil if 1 NUMBER_OF_SUB-PARTIALS then

SUB-PARTIALS[NODE_BECOMING_PARTICIPATED][i] =
SUB-PARTIALS[i]B.

NODE_BECOMING_PARTICIPATED e: PARTIALS_RECEIVED_FROM,

NEW_PARTICIPANT_RECEIVE:o-function
Input:

SUB-PARTIAL_SUPPLlERS:set of node-id
ALL-SUB-PARTIALS_SUPPLIED:table[SUB-PARTIAL-SUPPLlERS] of

S UB-PARTIALS_SUPPLIED : signed
< CYCLE = CYCLE_# :integer,
SUB-PARTIALs:sealed<:table[node-id] of partial-key>,
PARTICIPATE_to_NEW_PARTICIPANT_RECEIVE = :

transfer-kind>
EXTENDERS:table[node-td] of

EXTENDER: signed
<KELCREATION_# = :integer,
INDEX: integer.
EXTENSION:sealed<:table[integer] of partial-key>,
CREATE_KEYS_to_NEW_PARTICIPANT_RECEIVE = :

transfer-kind>
Comment: The node which has become participated is allowed to use this 0-

function to obtain the sub-partials issued it by the quorum of participated
nodes during a PARTICIPATE, and thereby obtain a full set of partials and
also - sub-partials. It is then able to list itself in its
PARTIALS_RECEIVED_FROM. indicating it has received sufficient partials
and allowing it to become present.

Exceptions:
NOT _ENOUGH_SUPPLIERS: cardinality (SUB -PARTIAL-SUPPLIERS) <

QUORUM
BAD-SUPPLIERS: C pARTICIPATED
BAD-SUPPLIER_SIGNATURE: 3n:node-id (n e: SUB-pARTIAL-SUPPLIERS /\ _

(SUB-PARTIALS-SUPPLIED[n] , NODE_PUBLICS[nH
BAD-EXTENDER-SIGNATURE: 3n:node-id

ILAST_CHANGES[OWN_NODE] < LAST_CHANGES[n] A
check-signature (EXTENDERs[n]. NODE_PUBLICS[n])

WRONG_EXTENDER: 3 n:node-td
lLAST_CHANGES[OWN_NODE] < LAST_CHANGES[n] /\

EXTENDERS[n]

86

SUB-PARTIALS_REMAINING[n]B
Effects:

1 if s e: SUB-PARTIAL-SUPPLIERS then
with ALL-SUB-PARTIALS_SUPPLlED[S]

unseal (SUB-PARTIALS, APPLICATION_PRIVATE)J,
'V'p:node-id

1 if LAST-CHANGES[OWN_NODE] < LAST_CHANGESf:p] then
PARTIAL_KEYS[p] =

if s e: SUB-PARTIAL.SUPPLIERS then
with

'V' p:node-td
if LAST_CHANGES[OWN_NODE] < LAST_CHANGES[p] then

fwith EXTENDERS[P]
lunseal(EXTENSION, create-private(PARTIALKEYS[p]).

1 if 1 SUB-PARTIALS_REMAINING[p] then
SUB -PARTIALS[P][i] = n I,

OWN_NODE e: PARTIALS_RECEIVED_FROM

ASSUME_APPLICATION: D-function
Input:

PARTIAL-BUPPLIERS:set of node-id
PARTIALS_SUPPLIED:table[node-id] of

PARTIAL: signed
<REPLACED_NODE :node-id
OWN_NODE = REPLACINGJVODE:node-id
PARTIAL-B UPPLIED :sealed< :partial-key>,
RESTART_to_ASSUME_APPLICATION = :transfer-kind>

CHECKPOINT: (see ISSUE_CHECKPOINT)
Comment: The replacing node of a restart is enabled to perform this opera-

tion, which involves receiving partials for the replaced node, and using
them to obtain the saved application data from the checkpoint formed by
the replaced node, and messages sent after the checkpoint was formed.

Exc eptions:
BAD-BUPPLIERS; l: NODES_IN_ USE
BAD-BUPPLIER_SlGNATURES: 3n:node-id In e: PARTIAL-BUPPLIERS /\

lwith PARTIALS-BUPPLIED[n]
(PARTIAL,

Effects:
"o'n:node-id l if n e: PARTIAL-SUPPLIERS then

with PARTIALS_SUPPLIED[n]
unseal (PARTIAL....S UPPLIED , APPLICATION_PRIVATEH.

87

""'n:node-id if n E: PARTIALSUPPLIERS then
APPLICATION_PUBLICS =

merge-partials(withPARTIALS-SUPPLIED[n]PARTIAL-SUPPLIED)J

Information Releasing G-functions

The last two D-functions are given in this subsection. Unlike the previous

D-functions, they are not closely tied to any particular synchronized D-functions.

They release information about the node's state, but do not alter its state. The

PARTIALS_RECEIVED D-function allows a node to provide a signed statement

about those nodes it has received current partial keys from. The

ISSUE_CHECKPOINT o-function is unique in that it includes no input template,

which means it does not check any signatures of input parameters, and thus can

be freely called by anyone. This is appropriate because the output of this 0-

function provides, among other things, an authenticated snap-shot of the node's

public state, which Chapter VII will show to be useful to those seeking to trust

the network. Another use of checkpoints, that of saving enough of a node's state

to make restart possible, was mentioned in Chapter IV. A further practical use

of this D-function is to allow verification of the state certified into a node, which

can allow new nodes to skip over a possibly long prefix of synchronized 0-

function calls.

The following are the information releasing un-synchronized o-functions:

PAR TIALS_RECEIVED: o-function
Input:

MINIM UM_PARTIALS_RECEIVED : signatured
<KELCREATION_# = :integer.
NODES_RECEIVED_FROM :set of node-id.
partials-received =

Comment: The instant node adds its signature to the set of node ids input iff
this set is a subset of the instant node's PARTIALS_RECEIVED_FROM.

BS

Exceptions:
NOT-ALL_PARTIALS-RECElVED; 3n;node-:id

{n E: NODES_RECElVEDJROM A

Effects:

n Jt PARTIALS_RECEIVED_FROM A
n ¢ A
KEY_CREATION_# ¢ 0

sign (MINIMUM_PARTIALS_RECEIVED, NODE_PRIVATE)

ISS UE_ CHECKPOINT: o-function
Output:

CHECKPOINT: signed
<INDIVIDUAL_ V-FUNCTIONS = ; any-1.ype,

CONSENSUS_ V-FUNCTIONS = ; any-type,

ALL_CURRENT_SECRETS;
sealed<APPLICATION_SECRET_ V-FUNCTIONS = ;

any-type> ,

ALL_NEW_SECRETS: sealed
<NEW_APPLICATION_SECRET_ V-FUNCTIONS = :

any-type> ,

checkpoint: transfer-kind>
Comment: Causes the receiving node to output a signed copy of all its

INDIVIDUAL_ V-FUNCTIONS and CONSENSUS_ V-FUNCTIONS state.
A copy of its current secret state sealed with its current
APPLICATION_PUBLICS and a copy of its new secret state sealed with
NEW_APPLICATION_PUBLIC.

Effects:
seal (ALLCURRENT_SECRETS, APPLICATION_PUBLICS),
seal (ALLNEW_SECRETS , NEW_APPLICATION_PUBLIC),
sign (CHECKPOINT, APPLICATION_PRIVATE)

69

Chapter VI

Operational Example

An example use of the algorithms of Chapter V, in the form of anno-

tated calls, illustrates the use of the algorithms and shows hOlf a

three node network can be established

This chapter presents an example which shows how a simple network of

three nodes can be brought into existence. The number three was selected

because it can illustrate many of the important aspects of larger systems-·in

an example of manageable size. The heart of the chapter is a series of 0--

function calls, de scribed in terms of a modified form of the templates intro-

duced in the previous chapter.

The proofs of Chapter VII will all begin with the assumption that a network

exists initially. One way to establish this initial condition in practice is to apply

the techniques of Chapter IX for certifying the appropriate initial state defining

the desired network into each node of the network. The present chapter shows

an alternative approach, in which the algorithms of the previous chapter can be

used to initially establish a network. This approach begins with a set of nodes

that are all in the initial state, as defined in Chapter V. Through a series of 0--

90

function calls. such as those presented in this chapter. the nodes are all brought

into an appropriate initial state which defines the desired network.

An approach like the one presented here may prove more convenient in

practice -especially if "off-the-shelf" nodes are to be used.

§1 Adding in Three Nodes

Gives D-function calls for making three initial nodes present.

The first half of establishing a network is to add in the nodes one at a time.

Three nodes, a, b. and c. are each successively added into the network in this

section. A specially modified form of input template is used in this chapter to

show the actual parameters of each £}.function call.

Adding Node a, Into an Empty Network

The very first step in forming a network is to propose the certification of

the first node. As can be seen by inspecting the modified template below. it

represents a call to the PROPOSE £}.function. Recall from Chapter V that such a

call requires a signature of a majority of the trustees at level 1. Notice how the

signatured constnLCto-r-t.ype of the original template has been replaced by the

primiti:ue-/unciion sign in the modified template below, and how the private key

corresponding to the public key trustee-l-publics is denoted in the second argu-

ment to the primitive. This is intended to indicate that a single trustee of level 1

has added its signature to the actual parameters. (One trustee of each level is

assumed in this chapter for simplicity, without loss of generality.)

Another thing to notice is that the actual parameter values are shown in the

modified template using roughly the same syntax used by values in the tem-

plates of the previous chapter. The symbol a denotes the node id of the first

node added; D.n denotes its node public key; alJ denotes its application key; and

91

/

"

faJ represents the set containing the single node id of the subject. The cycle

number of 1 is used because this is the initial value of the cycle number accord-

ing to the Y-function definition of Chapter V. Similarly. the value 0 is used for

the compressed history. since this is the initial value of this Y-function.

PROPOSE (ANNOUNCEMENT_DEFINITION:sign
(PROPOSAL_DEFINITION:

<a = NODE_CERTIFIED:node-id.
Iln = NODE_KEY:public-key.
all = APPLICATION_KEY:public-key.

= NODES_RESTARTABLE:set of node-id.>.
propose-certi/y = KIND_OF_PROPOSAL:proposal-kind.
1 = CYCLE_# : integer.
0= COMPRESSED_S TATE: integer.
propose = :action-kind).

When the call to PROPOSE above has been made. the proposal signed by a

is output. This signed proposal. along with an announcemenl definilion signed

by truslee 2. comprise lhe nexl call. which is shown below.

One thing new in this call is lhe compression of the aggregale Y-function

which contains all the consensus Y-functions. The inclusion of this value. serves

in effect as a cryplographic check sum of the consensus slate of the node during

the previous cycle. as mentioned in Chapter V. The subscripl of 1 indicates lhal

the value of the Y-function during cycle 1 is desired. Because the aggregale

includes COMPRESSED_HISTORY. the checksum is actually "chained" through

the entire history of consensus stales. A constant. tl' of type time is shown. It

represenls the time at which a signed the proposal.

92

CERTIFY(ANNOUNCEMENT:sign
«a = NODE_CERTIFIED:node-id.
Don = NODE_KEY:public-key.
a" = APPUCATION_KEY:public-key,
(ai = NODES_RESTARTABLE:set of node-id.
empty = TRUSTEES_SUPPLYING:set of node-id.
TRUSTEES'_PARTIALS:table[empty = :node-id] of

TRUSTEE_PARTIALS:sealed
<table[empty = :node-id] of partial-key>,

1 = PROPOSAL_CYCLE_#:integer.
2 = CYCLE_# :integer.
c ompress(CONSENS US_ V-FUNCTIONS 1) = :integer.
certify = :announcement-kind).
PROPOSAL:sign

«a = NODE_CERTIFIED:node-id.
= NODE_KEY:public-key.

all = APPLICATION_KEY:public-key.
= NODES_RESTARTABLE:set of node-id.

t1 = LATEST_TIMESTAMP:time.
1 = PROPOSAL_CYCLE_#:integer.
propose-certify = :proposal-kind). a;l»

Shown next is the template for the call which makes a present and also sets

the majority to 1. Notice that the output of a call to PARTIALS_RECEIVED is

included in the input template.

CHANGE_PRESENT(ANNOUNCEMENT_DEFINITION:sign
= NODES_TO_BECOME_PRESENT:set of node-id.

empty = NODES_TO_BECOME_ABSENT:set of node-id.
1 = NEW_MAJORITY:integer.
:3 = CYCLE_# :integer.
compress(CONSENSUS_ V-FUNCTIONS2) = : integer.

= : action-kind).
MINIMUM_PARTIALS_RECEIVED:sign

«0 = KEY_CHANGE_#:integer.
= NODES_RECEIVED_FROM:set of node-id.

partials-'1"BcBivBd. = : transfer-kind). a.;l»

93

Adding Node b Into the Network

The next step is to cause the certification of a second node. 'Ibis proceeds

much as with a. except that now a is the network. This implies that a must be

called twice for each synchronized D-function: once to obtain as signature on the

the announcement in phase 1. and a second time to allow a to actually perform

the action and transistion to the following cycle.

PROPOSE (ANNOUNCEMENT_DEFINITION:sign
«PROPOSAL_DEFINITION:

<b = NODE_CERTIFIED:node-id
bn = NODE_KEY:public-key.
bll = APPLICATION_KEY: public-key.
ta. = NODES_RESTARTABLE:set of node-id>.

propose-certify = KIND_OF_PROPOSAL:proposal--kind
4 = CYCLE_# :integer.
compress(CONSENSUS_ V-FUNCTJONS 3) =

COMPRESSED_STATE: integer.
propose = :action-kind). trustee-1-publics-1)

CERTIFY(ANNOUNCEMENT:sign
«b = NODE_CERTIFIED:node-id
bn = NODE_KEY:public-key.
bll = APPLICATION_KEY: public-key.
(bj = NODES_RESTARTABLE:set of node-id.
empty = TRUSTEES_SUPPLYING:set of node-id
TRUSTEES'_PARTIALS:table[empty = :nodc-id] of

TRUSTEE_PARTIALS:sealcd
<table[empty = :node-id] of partial-key>.

4 = PROPOSAL_CYCLE_#:integer.
5 = CYCLE_#: integer.
comprsss(CONSENSUS_ V-FUNCTJONS 4) = : integer.
certify = :announcement-kind). trustse-2-publics-1).

PROPOSAL : sign (sign
(b = NODE_CERTIFIED:node-id
bn = NODE_KEY:public-key.
bll = APPLICATION_KEY:public-key.

94

= NODES_RESTARTABLE:set of node-id.
t2 = LATEST_ TIMES TAMP: time.
4 = PROPOSAL_ CYCLE_# :integer.
propose-certify = :proposaHdnd). a;1). b;l)

The second node can then be made present in a network comprising two

nodes. with a majority of 2.

CHANGE_PRESENT(ANNOUNCEMENT_DEFINITJON:sign
= NODES_TO_BECOME_PRESENT:set of node-id.

empty = NODES_TO_BECOME_ABSENT:set of node-id.
2 = NEW_MAJORITY: integer.
6 = CYCLE_#: integer.
compress(CONSENSUS_ V-FUNCTIONS5) = :integer.
change-presents = : action-kind). trustee-2-publics-1)

MINIMUM_PARTIALS_RECEIVED:sign (sign
(0 = KEY_CHANGE_#:integer.

= NODES_RECEIVED_FROM:set of node-id.
partialsJT'eceived = : transfer-kind). a;l), b;l»

Adding Node c Into the Network

The whole process of adding a third node is much like that of adding the

second. First the node must be certified.

PROPOSE (ANNOUNCEMENT_DEFINITION:sign
(PROPOSAL_DEFINITION:

<c = NODE_CERTIFIED:node-id.
cn = NODE_KEY:public-key,
CII = APPLICATION_KEY:public-key.

b. = NODES_RESTARTABLE:set of node-id.>.
propose-certify = KIND_OF_PROPOSAL:proposal-kind.
7 = CYCLE_#:integer.
compress(CONSENSUS_ V-FUNCTIONSa) =

COMPRESSED_STATE: integer.

95

propose = :action-kind). trustee-2pu.blics-1)

CERTIFY(ANNOUNCEMENT:sign
(c = NODE_CERTIFIED:node-i.d
Cn = NODE_KEY:public-key.
CII =

b, = NODES_RESTARTABLE:set of node-1.d.
empty = TRUSTEES_SUPPLYING:set of node-1.d
TRUSTEES'_PARTIALS:table[empty = :node-1.d] of

TR US TEE_PARTIALS :sealed
<table[empty = :node-id] of partial-key>.

7 = PROPOSALCYCLE_# :integer.
B = CYCLE_# : integer.
eompress(CONSENSUS_ V-FUNCTIONS?) = :integer.
certify =

(c = NODE_CERTIFIED:node-1.d
en = NODE_KEY:public-key,
ell =

b. eJ = NODES_RESTARTABLE:set of node-1.d
t3 = LATESLTIMESTAMP:time.
7 = PROPOSAL.CYCLE_# :integer.
propose-certify = a;l), b;l), e;l»

The third node can then be added into the network of two nodes. Once this

is accomplished. a majority less than the total number of nodes is possible for

the first time.

CHANGE_PRESENT (AN NO UNCEMENT _DEFINITION :sign
= NODES_TO_BECOME_PRESENT:set of node-id

empty = NODES_TO_BECOME_ABSENT:set of node-1.d
2:: NEW_MAJORITY: integer.
9 :: CYCLE_#: integer.
e ompress(CONSENS US_ V-FUNCTIONS e) :: :integer.

:: : action-kind). trustee-2pu.blics-1)

MINIM UM_PAR TIALS_RECEIVED: sign (sign (sign
(0:: KEY_CHANGE_#:integer.

96

{cJ = NODES_RECEIVED_FROM:set of node-id.
partialsJT"eceived = a;l), b;l), C;I»

§2 Changing Keys & Setting Minima

Now that there are three nodes in the network, it is possible to have them

perform the first key-change. In order to do this, first new keys must be

created.

CREATE_KEYS (ANNOUNCEMENT _DEFINITION :sign
(2 = NEW_QUORUM:integer,
<0, 0, 0> = NEW_SUB-PARTIALS_NEEDED:

tableUa, b, cJ = :integer] of integer,
10 = CYCLE_# : integer,
compress(CONSENSUS_ V-FUNCTIONS g) = :integer,
create-keys = :action-kind), trustee-l-publics-1)

Once the appropriate un-synchronized D-function calls have been com-

pleted, the first partial and sub-partial keys are in place. At this point all the

keys in the system may be changed, which among other things will give the first

non-zero quorum.

CHANGE_KEYS(ANNOUNCEMENT_DEFINITION:sign
Oa. b, cJ = NODES_PARTICIPATING:set of node-id.
EVERY_PARTICIPANTS_NEW_KEYS:tableUa, b, cJ = :node-id] of

NEW_KEYS_FROM_CREATE_KEYS:
<sign «a! = NEW_APPLICATION_PUBLIC:public-key,
a[= NEW_NODE_PUBLIC:public-key), a;l),
sign«b! = NEW-APPLICATION_PUBLIC:public-key,
bf = NEW_NODE_PUBLIC:public-key), b;l),
sign ((cf = NEW_APPLICATION_PUBLIC:public-key,
cf = NEW_NODE_PUBLIC:public-key), 0;1»

11 = CYCLE_#:integer,
compress(CONSENSUS_ V-FUNCTIONS 10) = :integer.

97

change-keys = :action-kind>
MINIMUM_PARTIALS_RECEIVED:sign(sign(sign

«0 = : integer.
ta, b. cJ = NODES_RECEIVED_FROM:set of node-i.d.
partials-received = : transfer-kind). 0.;1). b;l). C;l)

Once there is a non-zero quorum and a number of nodes which admits a

majority less than the number of nodes. it will be possible for the trustees at

level 2 to propose and establish meaningful minima.

PROPOSE (ANNOUNCEMENT_DEFINITION:sign
(PROPOSAL_DEFINITION:

<2 = NEW_MINIMUM_QUORUM:integer.
1 = NEW_MINIMUM_MARGIN:integer.
ts = NEW_SUICIDE_INTERVAL:integer>.

propose-set-minimaKIND_OF_PROPOSAL:proposal-kind.
12 = CYCLE_# : integer.
compress(CONSENSUS_ V-FUNCTIONS 11) = :integer.
propose = :action-kind), trustee-l-publics- 1)

SET_MINIMA (ANNOUNCEMENT:sign
(2 = NEW_MINIMUM_QUORUM:integer.
1 = NEW_MINIMUM_MARGIN:integer.
ts = NEW_SUICIDE_INTERVAL:integer.
12 = PROPOSAL_CYCLE_# :integer.
13 = CYCLE_# : integer,
compress(CONSENSUS_ V-FUNCTIONS 12) = : integer.
set-minima = : announcement-kind». trustee-2-publics-1).

PROPOSAL : sign (sign (sign
(2 = NEW_MINIMUM_QUORUM:integer.
1 = NEW_MINIMUM_MARGIN:integer.
t2 = NEW_SUICIDE_INTERVAL integer.
t4 = LATEST_TIMESTAMP:time,
13 = PROPOSAL_ CYCLE_# : integer.
propose-set-minima = :proposal-kind). 0.;1). b;l). C;l)

98

Chapter VII

Proofs

Security and reliability properties of algorithms for multiple vault

systems are proved. using the assumptions presented in Chapter In.

This chapter presents a series of simple algorithms which extract many of

the essential aspects of the detailed algorithms presented in Chapter V. Secu-

rity and reliability properties are then proved for these algorithms.

§1 Security

Consider a set of n deterministic finite state automata. or nodes.

N I • ... • Nn • -operating as independent asynchronous processes. The Si of

node N;. includes a private key 14-1• known only to Ni . It also includes the set of

public keys KI • ••• ,Kn. where 14 corresponds with the private key Ki1• Thus,

with the secure cryptosystem of Chapter III. nodes may sign messages and they

may check messages received to determine message content and how many, if

any, nodes have signed a message.

In order to ensure the consistency of records maintained by the nodes of a

network. synchronization and a consensus are established. using a cycle counter

100

..

:

as in Chapter V.

LEMMA 1: Any two majorities of nodes have at least one node in common.

Proof: A first majority is more than half. A second majority can not be more

than half unless it has at least one node in common with the first majority. _

ALGORITHM 1: Let the state of each node N, be S, = (Ki l • K. s(. where

s;. controls which rule of the algorithm can be performed by node N, and is an

integer which may be though of as encoding the "consensus state." Initially

S;. = 1 and = O. for all i. Consider the following algorithm to be performed by

each node:

(1) When the ith node is presented with an arbitrary integer as an input mes-

sage A and Si = 1. the node. Ni • outputs its signature of the message.

Ki-1(A) , and sets s;. = 2.

(2) When the i th node is presented with a message A that bears the signature of

a simple majority of nodes. it changes its state to include the message. that

is becomes A .

THEOREM 1: Algorithm 1 ensures that all nodes changing their state by rule 2

will do so with the identical integer A.

Proof: Notice that a node can add its signature to at most one message. since

after signing a message in rule 1 of the algorithm. 5, = 2 and rule 1 ensures that

no signatures can be made made when 5;. = 2. By lemma 1. it is clear that since

each node signs at most one message, at most one message can receive a major-

ity of signatures. Thus, there is at most one message, A. which can be included

in any node's state in rule 2. _

101

An algorithm which comes closer to those described in Chapter V than algo-

rithm 1 will be presented next. It allows nodes to sign messages and change

states repeatedly. but enforces an ordered sequence of state transitions by use

of a cycle counter c.

ALGORITHM 2: Let the state of each node N, be Si = (K;l. K. si' ci'

where everything is as in algorithm 1 except that an integer cycle counter. ci'

has been added to the state of each node. Initially si = 1. A;. = O. and c, = 1. for

all i. Consider the following algorithm to be performed by each node.

(1) When the i th node is presented with a tuple <j. A>. j = ci. and si = 1. the

node outputs its signature of the input tuple. K;l(<j. A». and sets Si = 2.

(2) When the ith node is presented with a tuple <j, A> which bears the signa-

ture of a majority of nodes, for which j = Ci' the node changes its state to

incorporate A, increments its cycle counter c, by one, and sets s, = 1.

THEOREM 2: Algorithm 2 ensures that all nodes N with identical cycle

counter C will have identical values of A. In other words.,.i •,.j

(if 1 i n /\ 1 j n /\ ci = Cj then A;. = A,J

Proof: The desired result follows easily by application of theorem 1 to each par-

ticular value of c .•

A third algorithm will be presented next which captures more of the essen-

tial flavor of the algorithms of Chapter V. The main extension over algorithm 2

will be the idea that only a subset of nodes, called "present" nodes, will be

qualified signatories during each cycle, and that the input of a cycle will be able

to effect a change in the subset of nodes which are considered present during

the next cycle.

102

ALGORITHM 3: Lel the state of eacb node N, be 81, = (K;t. K. s1,' c,. P, . .-\).

where everytbing is as in algorithm 2 except that tbe state S, additionally

includes a set of public keys P,. which is a subset of K. corresponding to the set

of present nodes. Initially. s, = 1. "'" = o. c, = 1. and P, = K. for all nodes in N.

(1) When the ith node is presented with an input tuple <i. P. A>. s, = 1. and

1 = 0i. the node outputs its signature of the input, Ki"l«1. p, A». and sets

s, = 2.

(2) When the i tb node is presented with a tuple <i. P. A> which bears the sig-

natures of a majority of the constituents of Pi' for which 1 = 0i' and

¢ P K. tbe node changes its state to incorporate A, increments its cycle

counter a, by one, changes Pi to the new subset P from the input, and sets

s, = 1.

THEOREM 3:
will have

Algorithm 3 ensures that all nodes with identical cycle count a

identical A and P. In other words, V'i,

if 1 i n 1\ 1 1 s n 1\ c, = aj then At = A; /\ Pi = psJ.

Pro 0/: We proceed by induction on the cycle count c. Initially, 0, = 1, Pi = K.

and = 0, for all i, by assumption. Let pf denote the value of P in the state S;,

of node Ni wben c, = l; similarly Ai denotes the value of when ai = l. Then it

remains to show that pi = pJ and At = AJ implies that if node i and j obtain cycle

count l+1 then pt+ 1 = Pj+l and A,f+l = AJ+l. This follows directly from the rea-

soning of theorem 1. •

So far we have been assuming that all nodes function according to the algo-

rithms. Chapter III gave a categorization of possible attacks against vaults. Two

kinds of attacks, subversion and corruption, could alter the algorithms

effectively performed by the attacked vault. Next a slightly modified version of

algorithm 3 is presented that will ensure that the equivalent of theorem 3 holds

if less than r nodes deviate from the algorithms.

103

LEMMA 2: Any two subsets of a set containing p present nodes. both of which

contain at least a majority m. of members. where m. > p+2. must have at least a

margin r of nodes in common, where r = 2Xm.-p.

Pro 01: To see this notice that the p present members of N can l?e partitioned

into the following four disjoint subsets, for any two subsets of p. % andy. where

both % andy each have at least m. elements: nodes in % and not in y, nodes in 'II

and not in %. nodes in % ny. and nodes in neither % nor'll. Then,

cardinality(zny) = cardinality(z) + cardinality(y) - cardinality(zuy)

2xm-c ardi:n.ality (z uy) 2xm. - p. since cardi"!-ality (z uy) p .•

ALGORITHM 4: Let the state of each node Ni, be 8, =
K. s,. c,. r. P" where everything is as in algorithm 3 except that the

state 8 i additionally includes a constant r > O. used as the minimum margin.

Initially. = O. s(= 1. c, = 1. and Pi = K. for all nodes in N.

(1) When the ith node is presented with an input tuple <j. p, A>. s(= 1. and

j = Ci. the node outputs its signature of the input, Ki1(<j, p, A», and sets

Si = 2.

(2) When the ith node is presented with an input tuple <j, P. A> which bears .

the signatures of m nodes, where r 2Xm. - cardinality (Pi)' j = Cit and

P K. the node changes its state to incorporate A. increments its cycle

counter c(by one, changes P, to the new subset P from the input, and sets

s(= 1.

THEOREM 4: Algorithm.4 ensures that all nodes, Ni. with identical cycle

count ci that do follow the algorithm will have identical Pi and even if some

fixed set of less than r nodes do not follow the algorithm.

104

Proo!: This follows easily from the reasoning of theorems 3. because. by lemma

2. lemma 1 still holds for nodes following the algorithm. _

The "the covert partitioning problem" is the problem of ensuring that no

two nodes obtain the same cycle count without identical values for consensus

state.

THEOREM 5: If r or more nodes do not follow algorithm 4. then nodes with

identical cycle count. c. that do follow the algorithm. can have different values of

PandA.

Proo!: Suppose r nodes each add their signature to each of two different tuples

<j. Pl' AI> and <j. Pe. Ae>. and the remaining nodes in p-I divide into two

groups, each group of size {cardinality (pi-I) - rh·2 = m - r. One group signs

the first tuple in rule 1 and the other group signs the second tuple. Then there

are m valid signatures on each of two tuples with the same cycle count. and so

nodes can obtain different A and P by rule 2 .•

THEOREM 6: If all but less than r nodes follow algorithm 4. the irutial

configuration of a network. sufficient signed tuples. and the current cycle count

of sufficient nodes with s = 1. determine the complete history of states obtain-

able by any node following the algorithm.

Proo!.· Notice that theorem 4 guarantees a unique sequence of values of Ai and

pi, for all i from 1 up to j, obtained by any node following the algorithm. because

only one tuple can get sufficient signatures for each cycle. Thus. it is easy to

see that sufficient signed tuples reveal the sequence of values of A and p, and

that if m members of pi are in cycle i, with s(= 1. then no node has entered

cycle i+ 1 .•

105

§2 Reliability

Results concerning the reliability of the proposed systems and

analysis of threats are presented.

An extension of algorithm 3 is presented below and then used to show

necessary and sufficient conditions for the survival of a network. These will in

turn be used to develop a characterization of possible threats to reliability.

ALGORITHM 5: Let the state of each node N, be 5, =

(1<;1. K. Sit Cit Pi' T. where everything is as in algorithm 3 except that the

state 5, additionally includes a set of public keys T. one corresponding to the

private key held by each member of a set of trustees. Initially. = O. s" = 1.

ci = 1. and P, = K. for all nodes in N.

(1) When the ith node is presented with an input tuple <j. P. A>. s" = 1. j = ci'

and ¢ Pc K. which bears the signatures of a majority of the constituents

of T. the node outputs its signature of the input. ,Kt-l(<j. P. A». and sets

s, = 2.

(2) When the i th node is presented with a tuple <j. P. A> which bears the sig-

natures of a majority of the constituents of Pi and P. for which j = Cit and

¢ P c K. the node changes its state to incorporate A. increments its cycle

counter ci by one. changes Pi to the new subset P from the input. and sets

s" = 1.

THEOREM 7: If and only if the following conditions hold for i from 1 up to j

will at least a majority of members of p; following algorithm 5 obtain C = j+ 1.

(1) At least a majority of trustees sign at least one tuple <i. P. A>

(2) At least a majority of live nodes in pi for which C = i receive the same tuple

<i. P. A> signed by a majority of the trustees. and remain alive long

106

enough to output their signature on the tuple by rule 1.

(3) At least a majority of live nodes in pi+l with c=i receive copies of the tuple

signed and output by a majority of nodes in pi, and remain alive long

enough to update their states.

Proo!: If part: proceed inductively on i. Only if part: it is easy to check that if

any condition above is false, no node enters c = j+ 1 .•

Violations of the conditions of theorem 7 above divide naturally into the fol-

lowing categories:

(1) Trustee violations-no tuples are signed in violation of condition 1, or more

than one tuple is signed and provided nodes so that a majority of presents

is not possible, violating condition 2.

(2) Vault destruction-enough vaults are destroyed so that a majority of vaults,

as required in condition 2 or 3, does not exist.

(3) Message loss-enough of the output from condition 2 is irecoverably lost

that condition 3 can not be met.

Of course the number of nodes destroyed can change the requirements of

J:.he kinds of threats covered in (1) and (3) above, however, such interactions do

not significantly alter the difficulty of accomplishing either kind of threat, as will

be seen in the following subsections which give more detailed analysis of each

type of threat.

Trustee Violations

The trustees can stop a network from advancing to the next cycle and any

subsequent cycles by violating condition 1 or 2 of theorem 7. The possible ways

of violating the condition can be divided into three categories, each requiring a

different number of trustees to deviate from their proper function.

107

(1) A minority, l = caTdinality(T) - m, of trustee private keys are lost so that

a majority. m. of trustee signatures on any subsequent tuple can not be

obtained.

(2) A margin. T, of trustees covertly partition the trustees (see theorem 5), and

obtain more than one tuple with the same c. and supply these each to

enough nodes that condition 2 can not be met.

(3) A majority of trustees. m. each sign more than one tuple with the same c

and supply these each to enough nodes that condition 2 can not be met. (In

other algorithms, a variation on this requires the trustees to request

actions that would bring the nodes into a deadlock.)

Notice that when m = 273. l = T = 173. and also that m> land m > r.

These relationships suggest that threat 3 is not credible (Le. not likely to occur).

and that when m 273 threat 2 is not credible. When m < 273, threats 1 and 2

may each be credible, depending on the difficulty of isolating non-cooperating

trustees from each other while convincing them to sign tuples relative to that of

getting m trustees to sign two different tuples with the same cycle number.

Vault Destruction

Clearly, if every node is destroyed, the network is destroyed, and its data

lost, since partials held by nodes are necessary for restarts. The approaches to

survivable equiptment discussed in Chapter II may be quite effective against

credible threats to most systems. (Also. in .a network with a relatively small sub-

set of present nodes, a II shell game" could be played with the identity of those

nodes currently present.) Some applications may not pay the price for adequate

protection against loss of nodes, however. or loss of data may be intolerable in

an application. no matter how remote the possibility. A mechanism will be

described below which allows restoration of a disabled or even a totally des-

108

troyed network.

Chapter III introduced a hierarchy of trustees. The function of the highest

level trustees, those at level 3, have not been discussed yet. One possible solu-

tion to system survivability against threats related to destruction of sufficient

nodes to violate conditions 2 or 3 above, is for nodes to form partials of applica-

tion keys, and provide these partials to the trustees at level 3-much as in sin-

gle vault systems. The difference here is that these partials held by trustees at

level 3 would very likely never be called upon, and hence substantial cost can be

associated with recovering these keys. For example, the trustees of level 3 for a

bank's checking account transaction processing system might be the customers

of the bank, and a majority of two-thirds might be required.

Message Loss

Loss of signed messages, which could violate condition 3 above, can be

prevented by several communication techniques. The following three models of

communication and their corresponding rules of trustee behavior each ensure

reliability of the network:

(1) No message output by a node is lost-this can be achieved in a system

using broadcast style communication. as mentioned in Chapter II. where

everything sent is assumed saved by someone; it is the most rhobust, since

neither a dead vault nor bad trustee can cause loss of information critical

to reliability.

(2) Nodes remember and will provide all messages they have output-each

vault saves all it has signed, up to some limit, and will suply any saved thing

on request: only dead vaults can cause loss of recently signed things.

(3) Nodes remember last message they output and will not process next mes-

sage until explicitly told to do so by the trustees -vault has buffer for pre-

109

vious thing it has signed; vault can go on to next thing only after trustees

completes handshake; trustees can destroy reliability (but this is the case

in any event, as mentioned above).

110

Chapter VIII

Performance Analysis

This chapter is intended to show that the communication. time and

space requirements of the proposed systems are practical. for rea-

sonable system sizes.

§1 Resource Requirements Summary

The resource requirements of the proposed systems will be described in

terms of the number of nodes n and the "average" number of sub-partials w. In

some systems w=O, but every system satisfies w < n. Table 2 summarizes worst

case requirements in terms of nand w:

Space:

Messages:

Time:

o{n+nxw) bits stored by each node.
O(nxwZ) centrally stored bits.
o{nZ) messages for any synchronized network action.
o{n} bits per message.
2 public key pair creations per node per key chang e period.
O(n+nxw) cryptographic transformations per node per action.

Table 2. Worst Case Resource Requirements Summary

111

As was mentioned in Chapter V, a network can function without any sub-

partial keys, in which case w = O. On the other hand, the same chapter men-

tions advantages of sub-partial keys. In the worst case, one sub-partial key is

required for every node not participating in a key change, plus one less than the

current quorum to be used to reduce the quorum to 1. Thus, w is never as large

as n, and really depends on the number of nodes out of communication during a

key change and on the possible reduction in quorum size and not directly the

number of nodes in the system n.

§2 Space Requirements

Some conservative assumptions atout representation of V-functions

are used to develop summary and detailed analysis of storage

required both inside and outside nodes.

The storage requirements for a node are its Y-functions. Most of these are

of constant size or size linear in the number of nodes n. Only the sub-partials

are doubly subscripted, and they may contain at most n x w entries. A detailed

consideration of storage requirements like that presented in the following sub-

sections will require some assumptions about representation.

While details of the representation of Y-functions are beyond the scope of

the present work, it seems reasonable to suggest some simple representations

for purposes of analysis. Integers will probably require less than a hundred bits,

while keys and partial keys will require more than a hundred bits. One possible

scheme for representing node ids is to represent each as an element of some

practically inexhaustible set of values, much as "capabilities" might be encoded

as sixty-four bit numbers in some systems [Chaum & Fabry 78]. Only one node

id is needed for every current node and trustee; a single ordered list of the node

id corresponding to each might be maintained. The node ids could be used up in

some order. say lexicographic order, and the most recently used id would be

112

maintained. Thus, if an id was less than or eaqual to the most recent and not on

the list then it would be in USED_NODE_IDS. The various sets of node ids might

be implemented as bit maps, the way sets are intended to be implemented in

the Pascal language, possibly using the same ordering as in the list of current

ids. Tables indexed by node ids might similarly be represented as linear arrays

using the same ordering.

Storage Inside Nodes

Based on these loose assumptions about representation, it is easy to order

most of the various sorts of V-functions in terms of storage requirements. Many

of the V-functions hold data of fixed size such as a single node id, integer, seed,

or key. A more important class of V-functions holds sets of node ids, which by

assumption above may be represented as n bits. Next are the tables indexed by

type node id which hold integers and then those holding keys and partial keys,

all of which require n representations of each corresponding type, and thus O{n)

storage.

Another class of V-function includes those of seemingly unbounded size.

But actually, these V-functions hold historical information which becomes

obsolete and is never accessed after a reasonable amount of time and possibly

some garbage collection. For example, ALLOWN_NODE_PUBLICS and

PROPOSALS_PENDING hold information used to verify pending proposals, but

once the proposals are acted on or CANCELPROPOSALed this information is no

longer needed. Similarly, QUORUMS records the quorum in effect for previous

key change periods (as well as the current and next change period). Once there

are no more nodes in use whose last participation was during a particular old

key change period, the information retained about that period is no longer

needed. The set of used node ids which is maintained to avoid possible problems

resulting from multiple nodes with the same id can safely be purged of entries

113

so old that they do not appear in pending proposals or in the current key change

period, since nodes are effectively identified by their public keys. Such purging

or even the storage of used node ids would not be required in a practical system

of finite lifespan which uses the capability style representation of node ids men-

tioned above, since new node ids might simply be selected in sequence.

One V-function which is in a class by itself is CERTIFICATION. It is defined

as a table indexed by node id which contains sets of node ids. Using the simple

representation mentioned above, this would require n 2 bits. Because of the way

this V-function is used, however, it need only require O{n) storage. The reason

for this is that the only two kinds of access required are changing the whole set

of node ids associated with a particular node id, and checking that the set of

node ids recorded for a particular node id matches some given set. Thus, a suit-

able representation would entail merely storing a compression of the bit map

representing the set of nodes corresponding to a particular node id. In an appli-

cation where the nodes are equally trustworthy, the use of CERTIFICATION may

be limited to determining if a node is allowed to be applied or if it was intended

as a replacement node and in this case CERTIFICATION would only require one

or two bits per node id.

The final class of V-function is occupied by SUB-PARTIALS and

NEW_SUB-PARTIALS. These are doubly subscripted tables of partial keys. The

first subscript is a node id and the second is an integer whose maximum value is

found in SUB-PARTIALS_REMAINING or NEW_SUB-PARTIALS_REMAINING.

As was mentioned in earlier, w may be 0, and in that case these two V-functions

would require no storage. On the other hand, w may be nearly as large as n in

the worst case, and thus these V-functions may require O{wxn} storage.

114

Storage Outside Nodes

Extenders are the only objects which do not naturally have a particular

node which should store them. An extender does not need to be stored by the

node which created it because it is intended to be used when the creator is un-

available. Thus it seems that extenders should either be duplicated at all nodes

except the creator or stored in some reliable storage system outside the nodes,

perhaps by trustees. The number of extenders which must be maintained for

each node j is z = SUB-PARTIALS_REMAININGfj], but before a change keys an

additional NEW_SUB-PARTIALS_REMAININGfj] may be required. The "aver-

age" value of z is W, and hence the maximum number of extenders for a node is

2Xw. An extender contains «z-1)2)72 partial keys. The largest extenders get

used up first.

§3 Communication Requirements

Summarizes and gives details of the number and size of messages

required by synchronized D-functions and their associated un-

synchronized functions.

The number of messages sent during a key change for a a network with n

nodes is at worst O(n2) , since every node may potentially issue a partial key to

and receive a partial key from every other node. This is the only synchronized

action which requires that more than one node send a message to more than

one other node. (Other synchronized actions may use as many messages, as dis-

cussed below, but such use is not necessary.) The length of these messages is

linear in the number of sub-partials W which is established for each node by the

previous create keys. As mentioned above, the messages lengths are at worst

O(n). A detailed analysis of the message requirements of all the D-funclions fol-

lows.

115

The following synchronized G-functions require only the phase 1 and phase 2

messages: PROPOSE, CANCEL-PROPOSAL, APPLY, CERTIFY, REMOVE_NODES,

and SET-MINIMA. One way to accomplish this which is economical in terms of

messages entails passing a message around through a MAJORITY of nodes which

each add a signature, and then passing the multiply signed message around

again to every node. When nodes or channels go down, some mechanism must

allow messages to take an alternative route. Naturally some non-security

relevant mechanism would keep track of the identity and order of signatories, as

mentioned in Chapter V, to facilitate signature checking. The opposite extreme,

which is extravagant in terms of message requirements, entails each node sign-

ing a message and broadcasting the signed mp-ssage to every other node. In this

case, node or channel failures within the constraints of the assumptions do not

require any special action. Of course various intermediate combinations of the

two approaches could be used. The choice of mechanism may depend on a

variety of factors, such as communication cost, the speed of the communication

mechanism, availability of reliable mechanism to supervise the signature collec-

tion process (see section two of the previous chapter). A detailed consideration

of the alternatives is beyond the scope of this work and may be an area for

further research.

The ANNOUNCEMENT_DEFINITION of the CHANGE_PRESENT G-function

includes the output of a PARTIALS_RECEIVED G-function call that was per-

formed by every node participating in the CHANGE_PRESENT. However, such

outputs need be requested at most w+ 1 times for each key change period. One

of these times being the PARTIALS_RECEIVED output used in the

CHANGE_KEYS and produced by p = PRESENT nodes, which is valid for every

node participating in the key change. In the worst case, the remaining w nodes

are each the subject of a PARTICIPATE and are then individually made present

by successive calls to CHANGE_PRESENT. This case requires p rounds of at

116

most n present nodes.

The constant-sized output of the RESTART resulting from phase II must be

collected from a QUORUM nodes and supplied to the REPLACING node.

During a PARTICIPATE, a majority of present nodes must exchange mes-

sages with the subject node. The messages sent to the subject node, from the

output of the PARTICIPATE, each include a sub-partial key for every node who

last participated in a key change period which followed the last key change par-

ticipated in by the subject node, but which preceded the current key change

period. Partial keys must also be included in these messages from those nodes

participating in the current key change that have not performed an

ISSUE_NEW_PARTIALS with the subject of the PARTICIPATE. These same

nodes must supply extenders to the subject of the PARTICIPATE. Of course the

number of sub-partials supplied in a message from one node to the subject of

the PARTICIPATE or the number of sub-partial keys contained in an extender

can never be greater than n. The messages contained in the output of the PAR-

TICIPATE performed by the subject node must each be transmitted to the parti-

cipant node for which they are intended. Thus, p fixed-sized messages must be

delivered.

During a CREATE_KEYS each node issues a set of z-l extenders, where z is

the number of sub-partials requested for the node. An extender contains

«z-1)2)_;-2 partial keys. The other output generated by each node in a

CREATE_KEYS just contains the fixed-sized new keys for the node. These new

keys can be joined together and used in a round of calls to

RECEIVE_NEW_PARTIALS. Each node participating in such a round will issue a

new partial and a set of at most w sub-partials to every other node supplying

new keys for the round. Before a call to CHANGE_KEYS can occur, every node

that will participate in the key change must supply every other node that will

participate a partial key and possibly some sub-partial keys. Thus,

117

\ 1

nx(n-l} = O{n2} messages are required, and the messages are of size O{w}. This

entails 0(p2) messages of length w, and which exceeds all other message

requirements.

Before a CHANGE_KEYS can be performed, a round of

RECElVE_NEW_PARTIALS, which entails a fixed-sized message, must be accom-

plished which includes every node that will become participated.

§4 Time Requirements

Summary and detailed analysis of computational requirements for

the various D-functions are presented

The most computationally significant tasks performed by nodes are the

cryptographic functions of signing, checking signatures, sealing, unsealing,

forming keys. and forming partial keys.

Key Creation

Public and private keys are created only during the CREATE_KEYS 0-

function. Two public key/private key pairs are created by each node for the new

key change period. In addition. Chapter V indicates that z other pairs of keys

may be created for protecting extenders, however, these keys could be conven-

tional keys, and their creation would presumably require little effort.

Cryptographic transformation

Multiple encryption of messages is limited to a fixed depth, except for the

signatured templates, of which their are two kinds: {1} every synchronized 0-

function requires that at least a MAJORITY of nodes, and possibly as many as n

nodes, each form a digital signature, and that every node eventuaUy check at

least a MAJORITY of the signatures; and (2) the output of PARTIALS_RECEIVED

118

may also contain signatures made by a at most n nodes. Since signatures need

not be chained over an entire message, but need only be made on a compression

of the message, these operations require at worst o{n} cryptographic transfor-

mations.

The remaining use of cryptographic transformations is for forming mes-

sages and decrypting messages. Since the remaining multiple encryption of

messages is of fixed-depth, and each node receives at worst n messages per 0-

function each of length at most w, or a fixed fixed number of messages of length

O(n), or o{n) fixed-sized messages, the maximum number of cryptographic

transformations performed by a node during a single o-function is O(n+nxw).

119

Chapter IX

Initial Certification

Solutions are presentcd to the problem of building apparatus and

preparing it for tamper-safcd operation, :while maintajning the trust

of mutually suspicious groups.

The certifiers of a vault must be convinced of two things: (1) that the plan

for the vault has the desired properties, and (2) that the vault conforms to the

plan. The first is discussed in Chapter II, under the subsections dealing with pro-

tection and verification; the second is the topic of the present chapter. Since

much of the plan is information that the vault is required to use (e.g. programs,

trustees' public keys, and initial values of V-functions) it need only be signed by

certified mechanism within an otherwise certified vault.

There are a variety of approaches to the remainder of the second

problem-determining whether a physical device conforms to the plan-each

yielding some degree of trust for a particular technology. Since difierent tech-

nologies may be used in a particular system (e.g. printed circuit boards, and

integrated circuits), and different parts may be constructed by different groups,

a number of different techniques may be combined for a particular system.

120

Of course, the certifiers' jobs are not completed until they have witnessed

the securing of the vault and the display of its public keys.

§ 1 Multiple Observer Construction

Two approaches to construction are presented: (1) mutual observa-

tion and inspection, and (2) random public selection of component

parts.

An obvious approach to certifying a device is simply to inspect it. (This

might be adequate to determine the interconnections provided by a printed cir-

cuit board, e.g.)

Higher degrees of certainty and some technologies may require that the

manufacturing process be observed as well. If a device is publicly chosen at ran-

dom from a large collection of identical devices (integrated circuits, e.g.), then

interested parties could choose additional devices and destructively test them.

The foregoing suggests a scenario in which a publically announced event is

used to create a vault. The event may be held at a warehouse where many chips

of the desired kind(s} are stored. Each chip is given a serial number by some

means, such as by its position in the storage arrangement. First. a printed cir-

cuit board is fabricated, possibly on a clear substrate. while any interested

attendee may observe the manufacturig process and possibly record photo-

graphically, for latter inspection, the interconnection pattern provided by the

board. Next, a random number is arrived at by some publically verifiable tech-

nique, such as throwing dice or some other technique used in gaming. Then the

chip identified by the raridom number is carefully removed from storage and

placed on the board. This process may be repeated for each chip required.

Finally, the attendees watch as the chips are wave-soldered onto the board, the

board is placed in the vault, and the vault is closed up.

121

§2 Multiple Constructor Construction

Each group can supply modules in such a way that the whole system

is guaranteed to work propcrly, or not at all, if the modules suplied

by a particular group work properly.

There is an alternative approach to construction in which each certifying

organization can produce a subset of the modules which comprise a system.

Modules can be combined in such a way that if the modules supplied by anyone

organization conform to the plan, the whole system will behave as if each

module conformed to the plan. This approach differs from the previous tech-

niques in that a certifier can render the vault inoperative by providing a mali-

cious module.

For example, one way to combine a set of random number generator

modules, each supplied by a different certifier, is to add their outputs bit-wise

modulo two. {More sophisticated approaches have been suggested by Key [ao].}

Redundant isolation modules for the power and input/output lines, which pass

through the vault's shielding, would be arranged serially within the vault. Multi-

ple tamper detecting modules within the vault, possibly of different types, would

make for a more secure vault. Reliability, in the form of immunity to false

alarms, can be traded for security by a mechanism that requires more than one

alarm be tripped before the memory content is erased.

Each member of a set of redundant processor modules must have access to

all of the vault's inputs. If the output of one particular processor module is used

as the output for the entire vault, the other processors must be able to compare

their output to its output, and have time to stop the output on its way through

the isolation devices, before it leaves the vault's shielding. If, instead, the out-

puts of the processors were routed through a voting device, the system could be

made more reliable at the expense of the security lost by allowing one or more

processors to be ignored.

122

If memory devices which will hold keys and other important information are

supplied by mutually suspicious certifiers, each certifier may have to be con-

cerned that some device supplied by another certifier will improperly retain

information when tamper-responding or fail-secure mechanisms call for its des-

truction. This problem can be solved if thermal pyrotechnic devices, such as

thermite, are placed within the vault. Each certifier might then supply a pyro-

technic module.

When the modules are installed in the vault, it should be possible to certify

their interconnections by inspection.

123

Chapter X

Future Work, Summary & Implications

Some of the work remaining is pointed out. a brief summary of the

present work is provided and its implications are touched on.

Future Work

A critical step in the ultimate acceptance of systems like those proposed

here is their transition from the paper design stage into the simulation and pro-

totyping stages. Such a step would give the algorithms an opportunity for

further evolution. The substantial effort required for verification of the security

and reliability properties of the algorithms could then be applied to a version of

the algorithms more likely to actually be used.

A potentially significant step in accelerating the ultimate acceptance and

use of the proposed systems is their initial use in a real application. Thus. it

may be important if a particularly well suited application exists which can take

advantage of the opportunities provided by early and first time adoption of these

systems and bear the higher initial overhead associated with such adoption.

124

"

Summary & Implications

A feasibility argument has been presented for a technique for constructing

and maintaining a colle ction of computers in such a way that mutually suspi-

cious groups may come to trust it. To the extent that such systems prove prac-

tical. those providing information to. or relying on the output of a computer sys-

tem. will also insist on being able to trust it.

125

References

Azmuth, C. and Bloom, J., "A Modular Approach to Key Safeguarding," Unpub-
lished, Texas A&M University, College Station, TX, 1960.

Baran, P., "On Distributed Communications: IX. Security, Secrecy and Tamper-
Free Considerations," Memo RM-3765-PR, Rand Corp., Santa Monica, Ca., August
1964.

Bayer, R. and Metzger J.K., "On the Encipherment of Search Trees and Random
Access Trees," ACM Transactions on Database Systems, vol. 1, no. 1, March 1976,
pp.37-52.

Blakley, G.R.. "Safeguarding cryptographic keys," AFIPS 1979, pp. 313-317.

Blakley, G.R., "One-Time Pads are Key Safeguarding Schemes, Not Cryptosys-
terns." Proceedings of the 1980 Symposium Security and Privacy, IEEE, Oak-
land, Ca., May 1980.

Branstad, D.K., "Encryption Protection in Computer Data Communications," 4th
Data Com. Symp., ACM and IEEE, Quebec City, Canada, October 1975.

Carson, J.C., Summers, J.K. and Welch. J.S., "A Microprocessor Selective Encryp-
tion Terminal for Privacy Protection," NCC 1977, pp. 35-3B.

Chaum, D.L. and Fabry, R.S., "Implementing Capability Based Addressing Using
Encryption," Memorandum UCB/ERL M76/46, U.C. Berkeley, Berkeley Ca., 1976.

Chaum, D.L., "Computer Systems Established, Maintained, and Trusted by Mutu-
ally Suspicious Groups," Memorandum UCB/ERL M79/10, Electronics Research
Laboratory, U.C. Berkeley. Berkeley Ca., February 22. 1979.

Chaum, D.L., "Untraceable Electronic Mail, Return Addresses. and Digital Pseu-
donyms," Comm. ACM. vol. 24, no. 2. February 19B1, pp.64-6B.

Chaum. D.L., "Design Concepts for Tamper-Responding Systems," private com-
munication, 19B2.

Cheheyl, M.H., et aI, "Verifying Security," ACM Computing Surveys, vol. 13, no. 3.
September 1961, pp. 279-339.

Denning, D.E., "A Lattice Model of Secure Information Flow," Comm. ACM, vol. 19,
no. 5, May 1976.

Dewar, R.B.K, Schonberg. E.. and Schwartz J.T., "Higher Level Programming:
Introduction to the Use of the Set-Theoretic Programming Language SETL,"
Computer Science Department, Courant Institute of Mathematical Sciences, New
York, N.Y .• 1961.

126

Diffie. W. and Hellman, M.E .• "Multiuser Cryptographic Techniques," NCC 1976,
pp. 109-112.

Dolev. D., and Yao, A.C .• "On the Security of Public Key Protocols," Report No.
STAN-CS-81-854, Department of Computer Science, Stanford University. Stanford
Ca .• May 1981.

F.D.l.C, "A Guide to EDP and EFT Security Based on Occupations," Division of
Management Systems and Financial Statistics. Federal Deposit Insurance Cor-
poration. November 1977.

Feistel, H., "Cryptographic Coding for Data-Bank Privacy," Research Report RC
2827. IBM T. J. Watson Research Center. Yorktown Heights, Ny., March 1970.

Feistel. H., Notz, W. and Smith. J., "Some Cryptographic Techniques for
Machine-to-Machine Data Communications." Proceedings of IEEE. vol. 63. no. 11.
Nov. 1975, pp. 1545-1554.

Floyd. R., "Assigning Meanings to Programs." Proceedings of American
Mathematical Society Symposia in Applied Mathematics," vol. 19. 1967. pp. 19-
32.

Flynn, R. and Campasano, A., "Data Dependent Keys for a Selective Encryption
Terminal," NCC 1978. pp. 1127-1129.

Frank. H. and Frisch, LT .• "Analysis and Design of Survivable Networks," IEEE
Trans. on Communication Technology, vol. 18, no. 5, October 1970, pp. 501-519.

Gill, J. T., "Probabilistic Turing Machines and Complexity of Computation," Ph.D.
Dissertation, U.C. Berkeley, Berkeley Ca., 1972, pp. 42-71.

Gudes, E., Koch, H.S. and Stahl. F.A., "The Application of Cryptography for Data
Base Security," NCC 1970, pp. 97-107.

Haakinson, E.J., "Spread Spectrum: An Annotated Bibliography," Special Publi-
cations NTIA-SP-78-1, National Telecommunications and Information Administra-
tion. May 1978.

Harrison. M.A., Ruzzo, W.L., and Ullman. J.D., "Protection in Operating Systems."
Comm. ACM, vol. 19, no. 8, August 1976. pp. 461-471.

Heinrich. F.R. and Kaufman, D.J., "A Centralized Approach to Computer Network
Security," NCC 1976, pp. 85-90.

Kahn. D., "The Code Breakers, The Story of Secret Writing." Macmillan Co., N.Y.,
1967, p. 395.

Kent, S.T., "Encryption-based Protection Protocols for Interactive User-
Computer Communications." Tech. Rep. no. MIT/LCS/TR162. Lab. for Compo
Sci., MIT, Cambridge. Ma., May 1976.

127

Kerckhotis, A., "La Cryptographie Militaire," L. Baudoin, Paris, 1883.

Key, E., Private communication, 1980.

Knuth, D.E., "The Art. of Comput.er Programming: Seminumerical Algorithms,"
vol. 2, Addison-Wesley, 1972, pp. 2-3.

Lampson, B.W., "Protection," Operating Systems Review, vol. 8, no. 1, January
1974, pp. 18-24.

Levitt, K.N., Robinson, L. and Silverberg, B.A., "The HDM Handbook," Computer
Science Laboratory, SRI International, Menlo Park, Ca., June 1979.

Merkle, RC., "Secure Communications over Insecure Channels," Comm. ACM,
vol. 21, no. 4, April 1978, pp. 294-299.

N.B.S, "Data Encryption Standard," F.I.P.S. Pub. 46, National Bureau of Stan-
dards, January 15, 1977.

Needham, R and Schroeder, M., "Security and Authentication in Large Networks
of Computers," Comm. ACM, vol. 21, no. 12, December 1978, pp. 993-998.

Notz, W.A. and Smith, J.L., "An Experimental Application of Cryptography to
Remotely Accessed Data Systems," Proc. ACM 1972 Conf., pp. 282-297.

Owicki, S., and Gries, D., "An Axiomatic Proof Technique for Parallel Programs
I," Acta Informatica, vol. 6, pp. 319-340.

Parker, D.B., "Crime by Computer," Scribner & Sons, N.Y., 1976.

Parnas, D.L., "A Technique for Software Module Specification with Examples,"
Comm. ACM, vol. 15, no. 5, May 1972, pp. 330-336.

Parnas, D.L., "On the Criteria To Be Used in Decomposing Systems into
Modules," Comm. ACM, vol. 15, no. 12, December 1972, pp. 1053-1058.

Peterson, H. and Turn, R, "System Implications of Information Privacy." NCC
1967, pp. 291-300.

Poli, D.L., !'Security Seal Handbook," Sandia Report 78-0400, Sandia National
Laboratories, Albuquerque, New Mexico, December 1978.

Purdy, G.B., "A High Security Log-in Procedure," Comm. ACM, vol. 17, no. 8,
August 1974. p. 442.

Ramamoorthy, C.V., and So, H.H., "Software Requirements and Specifications:
Stalus and Perspectives," Memmorandum No. UCB/ERL M78/44, Electronics
Research Laboratory, U.C. Berkeley, Berkeley Ca., June 1978.

Randell, B., Lee, P.A., and Te Ie ave n, P.C., "Reliability Issues in Computing Sys-
tem Design," Computing Surveys, vol. 10, no. 2, June 1978, pp. 123-165.

128

Rivest, R., Shamir, A. and Adleman, L., "A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems," Comm. ACM, vol. 21, no. 2, February 1978,
pp. 120-126.

Robinson, L., and Levitt, K.N. t "Proof Techniques for Hierarchically Structured
Programs," Comm. ACM, vol. 20, No.4, April 1977.

Sandia National Laboratories, "Barrier Technology Handbook," Sandia Report
77-0777, Sandia National Laboratories, Albuquerque, New Mexico, April 1978.

Sandia National Laboratories, "National Seismic Station Program," Sandia Tech-
nology, vol. 5 no. 3, May 19B1, pp. 17-22.

Schroeder, M.D., "Cooperation of Mutually Suspicious Subsystems in a Computer
Utility," Technical Report MAC TR-104, MIT Project MAC, Cambridge Ma., Sep-
tember 1972.

Shamir, A., "How to share a secret," Comm. ACM, vol 22, no. 11, November 1979,
pp. 612-613.

Shannon, C.E., "Communication Theory of Secrecy Systems," Bell System
Technical Journal, vol. 2B, no. 4, October 1949, pp. 656-715.

Stonebraker, M., "Implementation of Integrity Constraints and Views by Query
Modification," Proceedings of the 1975 ACM-SIGMOD Conference on Management
of Data.

Stoughton, A., "Access Flow: A Protection Model which Integrates Access Control
and Information Flow," Proceedings of the 19B1 Symposium on Security and
Privacy, IEEE, pp. 9-17.

Von Neumann, J., "Various Techniques Used in Connection with Random Digits,"
1951, Collected works, vol. 5, A.H. Taub Editor, Pergamon Press, N.Y., 1963.

Weissman, C., "Security Controls in the ADEPT-50 Time-Sharing System," FJCC
1969, pp. 119-133.

129

