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ABSTRACT 

A number of organizations who do not trust. one another can build and 
repair a highly-secured computer system that they can all trust (if they can 
agree on a workable design). Banking provides an example of the need for 
these systems. Cryptographic techniques make such systems practical, by allow
ing stored and communicated data to be protected while only a small mechan
ism, called a vault, need be physically secured. Once a vault has been inspected 
and sealed, any attempt to open it will cause it to destroy its own information 
content, rendering the attack useless. A decision by a group of trustees can 
allow such a vault--or even a physically destroyed vault--to be re-established 
safely. 

Networks of vaults, in which some active vaults are necessary to re
establish the network, have two advantages over single vault systems: (1) infor
mation that is no longer needed can be permanently destroyed, and (2) abuse 
of the trustees'. power can be detected in advance. Each of some mutually 
suspicious groups can supply part of a vault, in such a way that each group need 
only trust its part in order to be able to trust the entire vault. Another 
approach to construction is based on public selection of a system's component 
parts at random from a large store of equivalent parts. The practicality and 
ramificatio'ns of the ideas presented are also considered. 

Introduction 

Concern over the trustworthiness of 
computer systems is growing as the use of 
computers becomes more pervasive. It is 
not enough that the organization maintain
ing a computer system trusts it~ many indi
viduals and organizations may need to trust 
a particular computer system . 

For example, consider a computer that 
maintains the checking account balances of a 
bank. The bank is concerned, among other 
things, about possible loss of balance 
records. The Federal Reserve Bank must 
know the total of these balances, to ensure 
that the legally required percentage of the 
balances is on deposit with it. The Internal 

Revenue Service requires the ability to 
check the balance of an individual's account. 
Individuals, or a COllsumer organization act
ing on their behalf, may wish to ensure that 
disclosures are made known to those 
involved, and that inquiries can never be 
made on information that is more than a 
few years old. 

The thesis of this paper is that such 
widely-trusted computer systems can be pro
vided, if a workable design is agreed on. 
The cryptographic techniques which form 
the basis of the approach are introduced in 
the first section. They make such systems 
practical by reducing the mechanism upon 
which reliability and security depend. This 
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mechanism--the processor and its high speed 
store--will be called a vall/I. A vault will be 
physically secured by shielding it within a 
small safe like container. 

Begining in the second section, the 
paper departs substantially from the litera
ture, and presents techniques that allow 
mutually suspicious groups to maintain a 
vault. In each of the third and fourth sec
tions, an advantage of systems comprised of 
multiple vaults is presented. The fifth and 
final section removes the assumptions of 
perfect cryptographic and physical security, 
and also describes practical approaches to 
constructing and certifying these systems. 

1. Cryptography 

Information is encrypted to allow it to 
pass safely through a hostile environment. 
Traditionally, concern has centered on pro
viding the secrecy of communications. Con
sequently,· cryptographic techniques were 
devised to make it very difficult (in some 
cases impossible) to transform encrypted 
information back to its unencrypted form 
without possession of a secret piece of infor
mation, called a key. Two correspondents 
who were the sole possessors of a key could 
use it to maintain the secrecy of their 
correspondences. Note that the crypto
graphic algorithms are assumed to be public 
knowledge~ only the key need be kept 
secret. 

Ultimately, all cryptographic algo
rithms can be thought of as transforming 
symbols into other symbols. With a Captain 
Midnight decoder badge, the badge is the 
key, and letters are mapped into other 
letters. The un-breakable Vernam cipher 
maps only single bits into other bits, by 
adding each bit modulo two with a different 
key bit [Kahn 67]. On the other extreme, 
block cryptographic algorithms map large 
strings of bits, called blocks, into other 
blocks. The National Data Encryption Stan
dard, for example, maps 64 bit blocks into 
64 bit blocks, using a 56 bit key [NBS 171. 
Many blocks can be "chained" together dur
ing encryption, effectively forming a single 
large block [Feistel 701. 
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1.1. Application of Cryptography 

We will be interested in block 
schemes, like the Data Encryption Standard, 
which make it very difficult to modify part 
of an encrypted block of information 
without causing drastic changes to the entire 
decrypted block. In such systems, a large 
serial number can be added to a block 
before encryption. Its presence after decryp
tion indicates that the block has not been 
altered. Furthermore, it becomes extremely 
difficult for someone without a key to create 
a block that will contain a desired serial 
number when it is decrypted by a keyholder. 

Two communicants with a common 
key can converse using encrypted blocks of 
data, checking the serial number of each 
received block to ensure that it has arrived 
in the proper sequence, and to ensure that it 
has not been altered [Feistel, Notz and 
Smith 75]. One communicant might be a 
vault, and the other might be a terminal 
with a cryptographic capability. In a similar 
way, encrypted blocks of data stored in 
memory devices outside the vault are 
checked on their return to verify that the 
correct blocks were returned unaltered. 

All information leaving, or returning 
to a vault is in encrypted form; the unen
crypted form is only present within the 
vault, or after being decrypted by communi
cants. Thus, data being stored or communi
cated is secured against tampering and 
eavesdropping. However, it still must be 
secured against ob~·truction or destruction. 
To these ends, stored information might be 
duplicated at remote sites, and redundant or 
broadcast style communication channels 
used. Because the material is safely 
encrypted, the proliferation of copies poses 
no threat to security. 

1.2. Establishing a System 

There is nothing secret about a vault 
until it is sealed within its protective shield
ing. An unsealed vault can, therefore, be 
freely inspected by any interested party. As 
we shall see in section five, this is a prere
quisite to certification of the vault's mechan
ism by mutually SUSPICIOUS certifiers. 
Assume, for now, that mutually suspicious 
groups can know that a vault operates 
correctly, as a result of some certification 
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procedure. 

Such certifiable vaults can be built with 
the use of some relatively new cryptographic 
techniques. Those considered so. far have 
the unfortunate property that a common key 
must be distributed to the communicants, 
while it is kept secret from everyone else. 
In contrast, consider a fundamentally 
different sort of cryptographic algorithm 
independently proposed by Diffie and Hell
man [76a], and Merkle [78]. To use these 
algorithms, each participant creates a private 
key, that is never revealed to anyone else. 
A corresponding public key is made known 
to everyone. We will be concerned with 
public key .cryptographic algorithms (like 
that of Rivest, Shamir and Adleman [78]) 
where the two keys are inverses of one 
another, in the sense that that a block 
encrypted with one can be decrypted only 
with the other. 

A message is encrypted with the 
recipient's public key before being sent. 
Only the intended recipient can decrypt the 
received message, because the correspond
ing private key must be used to decrypt it. 
(A key-sized random serial number should 
be included in the message, because other
wise a guessed message would be verified if 
it proved identical to the original when it too 
was encrypted with the public key.) Some
one signs a message by encrypting it with 
their private key. If a serial number of all 
zeros is included in the message before it is 
signed, its presence after decryption with the 
corresponding public key would verify the 
signature. 

When the vault is sealed, a suitable 
public key and its inverse private key are 
chosen by a mechanism within the vault's 
shielding, using a physically random process 
[Knuth 69]. The public key is then 
displayed outside the vault, on a special dev
ice certified for this purpose. As far as the 
world outside the vault is concerned, the 
possessor of the vault's private key is the 
vault: it can read confidential messages sent 
to the vault, and it can make the vault's sig
nature. 
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2. What if Something Goes Wrong? 

If a vault were totally destroyed, com
putation would be safely halted--no secret 
information would be revealed. and the 
vault would not have taken any improper 
action. Other conditions might require an 
equally safe halt to computation. If an 
alarm device detects an attempt to penetrate 
the vault's shielding, or a fail-safe mechan
ism determines that the vault's contents can 
no longer be counted on to operate 
correctly, then the information stored in the 
vault, including the vault's private key, 
must be erased. 

This information will be encrypted in a 
special way, and saved outside the vault, so 
that a safe recovery can be provided. The 
encryption of the vault's contents, which 
includes its private key, is called a check
point, and is detailed below. At suitable 
intervals, checkpoints are formed, and then 
stored outside the vault. In some cases, 
there may be time to issue un-scheduled 
checkpoints before an emergency requires 
the vault's contents to be erased. 

The primary consideration behind the 
design of an encryption method for check
points is that there exists a means to decrypt 
them, but only at the appropriate time and 
place. The decision that some newly sealed 
vault can, and should, be given the ability to 
decrypt a checkpoint is necessarily a human 
one. Assume, for now, that the decision is 
to be made by unanimous consent of a set 
of trustees. A checkpoint is successively re
encrypted with each of a set of keys, one 
key for each trustee. Conventional as 
opposed to public key cryptography will be 
used for this. The keys used to encrypt the 
checkpoint are called partial keys, as they 
must all be obtained to decrypt the check
point. The partial keys are randomly gen
erated within the vault. 

Public key cryptography will be used to 
distribute the partial keys to the trustees in a 
secure manner. Before it is sealed, the vault 
is supplied with a public key issued by each 
trustee. Then, the vault ensures the 
confidentiality of the the partial key it sends 
each' trustee by encrypting it with the 
trustee's public key. Each trustee now has 
two keys to keep secret: a private key used 
to decrypt messages received, and a partial 
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key that will be used in connection with 
decrypting checkpoints. 

2.1. Restarts 

A restart is . the process by which a 
freshly sealed vault resumes the computa
tion whose state has been saved in a check
point. After a replacement vault is certified 
and sealed, it forms a temporary public key 
and its inverse private key from a random 
seed, and then 'displays the temporary public 
key, as the permanent public key was 
displayed in the original start-up. Then the 
restarting vault receives partial keys from 
the trustees. A trustee provides the secrecy 
of its partial key while it is in transit to the 
vault by encrypting it with the displayed 
temporary public key. 

Having received and decrypted the par
tial keys, the computation within the 
replacement vault decrypts the checkpoint. 
It then bootstraps itself into the state saved 
in the checkpoint. Thus, the original public 
key found in the checkpoint is 'reinstated, 
and the computation withing the replacing 
vault becomes an exact copy of the original 
computation. The restarted vault could be 
safely brought back up to date by re-playing 
all the messages sent it since the checkpoint 
was made. 

2.2. More Flexible Decision Making 

We have assumed that a consensus of 
the trustees is required for a restart, but a 
more flexible arrangement may be more 
useful in practice. One approach would be 
to create multiple copies of a checkpoint, 
each encrypted with a different subset of the 
partial keys, so that a consensus of the 
trustees holding the partial keys in anyone 
of the subsets could authorize a restart. For 
example, the subsets that would be used to 
allow a simple majority of the trustees to 
cause a restart are all the distinct subsets of 
the partial keys that contain just enough par
tial keys to constitute a simple majority. 

Forming many multiply encrypted 
checkpoints is clumsy at best, and is 
undesirable because it should be possible to 
prepare checkpoints quickly in an emer
gency. It is possible to achieve the same 
effect, however, while encrypting each 
checkpoint only once--with a single key. 
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Copies of this key are encrypted with the 
subsets of the partial keys, just as the copies 
of the checkpoint itself were encrypted in 
the previous scheme. These multiply 
encrypted copies of the key used to encrypt 
the checkpoint are generated when the vault 
is originally established.'" They can only be 
used by a restarting vault, once it has 
received a valid subset of partial keys. 

3. Multiple Vaults 

Up until now we have been concerned 
with the operation of a single vault. In this 
section,' systems that use multiple active 
vaults are shown to have a major advantage 
over single vault systems. They can make it 
impossible for anyone, including the 
trustees, to reconstruct obsolete informa
tion. 

We have seen how a disabled vault can' 
be replaced by a freshly sealed vaUlt, during 
a restart that uses a checkpoint issued by a 
disabled vault. The new vault is identified 
by the same permanent public key and will 
embody the same computation as its dis
abled predecessor. It is possible that a suc
cession of vaults will be formed at a particu
lar site, each restarted from a checkpoint 
issued by the preceding vault, and all 
embodying the same computation. It will 
often be useful to refer to this computation 
itself, without regard to a particular active 
vault. The computation will be called a 
node. 

This section is based on systems which 
involve multiple nodes. The node at a par
ticular site will be identified by its unique 
permanent public key. It will be convenient 
to refer to a set of nodes collectively as a 
network. When things are running 
smoothly, the nodes of a network will each' 
have a currently active vault~ when a node's 
active vault is forced to destroy its informa
tion content, however, the node will lack an 

Provision for a majority vote of 24 trustees would 
require 2.496.144 copies of the key. These could 
be generated by well known algorithms and placed, 
for example. on a single magnetic tape. This ap
proach becomes impractical with many more 
trustees. A cryptographic analogue to the Electoral 
College, in which intermediate keys serve the pur

. pose of electors. could be used for much larger 
numbers of trustees. 
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active vault until it is restarted. 

3.1. Destruction of Information 

In a single vault system, the partial 
keys held by the trustees will always be 
sufficient to decrypt any previous check
point. Thus, the trustees will have access to 
all information, no matter how old the 
information is. In contrast, information that 
is no longer needed in a system with multi
ple active vaults (i.e. a netWork) can be 
made permanently inaccessible by destroying 
the keys needed to decrypt it. In order to 
limit access to obsolete checkpoints, at least 
some of the partial keys must be destroyed. 
The network will be able to ensure that 
sufficient partial keys are desfroyed, because 
it alone will maintain some critical partial 
keys. 

When a node forms its partial keys, it 
does so in such a way that one additional 
partial key is always necessary to decrypt 
checkpoints. This partial key is distributed 
to the other nodes of the network, and not 
to the human trustees. When the current 
vault of a node dies and the node must be 
restarted, the human trustees will provide 
their partial keys as before, but the restart 
can not continue until the missing partial 
key is supplied by one of the other nodes. 
This node might require a signed request 
from each human trustee of the restarting 
node before it releases .the partial key it 
holds. These requests would include the 
temporary public key displayed during the 
restart, so that the vault trustee can send its 
partial key directly to the restarting vault. 

Each node of the network might have 
partial keys sufficient to allow it to assist the 
human trustees of any other node in need of 
restart. Then, even if every active vault in 
the network but one were destroyed, the 
surviving vault and the human trustees of 
the other nodes could rebuild the network. 
If every node were in need of a restart at 
once, however, the network would be per
manently disabled. This possibility could be 
made acceptably remote by the inclusion of 
at least some fault-tolerant nodes, possibly 
at highly secured locations. 

Periodically, say once a year, all keys 
in the network that could be used to decrypt 
information that is no longer needed, 
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including the permanent private keys, would 
be changed. Each node will issue a new 
public key, signed with its old private key. 
New partial keys, however, need only be 
issued to the vault trustees; the partial keys 
issued to the human trustees need not be 
changed. Checkpoints of previous years 
could no longer be decrypted, because this 
would require partial keys that were erased 
once the entire key change had been com
pleted successfully. 

4. Further Limits on the Trustees' Power 

In the previous section, we have been 
able to force the trustees to request certain 
partial keys of the network in order to 
obtain enough partial keys to decrypt a 
checkpoint. We have seen that if the net
work changes the keys used to form check
points, and the partial keys it releases, it can 
keep obsolete checkpoints from being 
decrypted. This section will be devoted to 
an approach to allowing the network to keep 
a comprehensive record of the partial keys it 
releases. Such a record is very useful 
because it can ensure that only certified 
vaults have decrypted checkpoints, and that 
they have done so only during certified res
tarts. 

One possible approach to providing 
such a record is presented in the following 
subsection. The next subsection augments 
this approach to cover the possibility of 
stolen vaults. The utility of mandatory 
cooling-off periods for restarts is explored in 
the third subsection, and the fourth and 
final subsection of this section looks at the 
effort required to subvert the record main
tained by a network. 

4.1. Rosters 

A network must issue its partial keys 
to a restarting vault on the trustees' request, 
but the network itself will maintain a record 
of the recipients of all the partial keys it has 
released. Since the only legitimate recipient 
of these partial keys is a restart, the reci
pient will be identified by its temporary key. 
Periodically, say once a day, the network 
will be able to issue a roster of all the tem
porary keys with which partial keys have 
been released. 

If each node has sufficient partial keys 
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to allow the trustees to restart any other 
node, then accurate rosters can not be 
guaranteed in general. To see this, consider 
the following scenario: the trustees usurp a 
node's current vault and deny it contact with 
the rest of the network, so that it thinks it is 
the only node not in need of restart. Then, 
they request it to supply its partial keys to 
fictitious restarts, whose temporary keys 
they have fabricated. Once it has divulged 
the partial keys, they destroy it, along with 
any record it tried to maintain of the res
tarts; so that no subsequent roster can con
tain the bogus temporary public keys. 

One solution is to appoint a particular 
highly protected node as the giver of partial 
keys and issuer of rosters. If it were des
troyed, rosters would no longer be issued, 
and restarts would no longer be possible. 
Instead of a single node, a fixed subset of 
nodes might be used. We will describe a 
scheme in which only a majority of the 
nodes of such a subset will be required to 
distribute partial keys and to issue rosters. * 

For simplicity and concreteness we 
consider the case in which the subset 
comprises the entire network. This implies 
that at least a majority of the nodes of the 
network must be active at all times, other
wise restarts would no longer be possible. 
Partial keys created with the techniques that 
allowed arbitrary subsets of partial keys to 
be sufficient will be used in such a way that 
only a simple majority of the vault trustees, 
along with a consensus of the human 
trustees, will be required for a restart. Each 
node maintains a list of the temporary keys 
that it has used to transmit partial keys. 
Signed and dated copies of a node's list are 
made public daily. A collection of such 
lists, made up of lists from a majority of the 
nodes, will be a roster. 

The temporary keys of all previous 
restarts must be represented in every 
succeeding roster. To see this, notice that 

* A slight generalizati'on of the argument in the 
preceding paragraph shows why less than a majori
ty is insufficient in a homogeneous subset. A deci
sion not requiring unanimous consent of a subset 
(like majority voting) allows a subset that has lost 
some members, but not enough to stop it from 
making decisions, to change its members and even 
its size. 
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there is at least one node in any succeeding 
roster that has participated in any previous 
restart, since the majority of nodes whos 
lists are represented in the roster must over
lap in at least one node with the majority 
that allowed a restart. The list of a restarted 
node must be brought up to date to reflect 
any partial keys released after the creation of 
the checkpoint used in the restart. One 
need not rely on a restarted node's having 
been brought back up to date (by re-playing 
messages sent it, as described earlier) to 
ensure that its list is up to date; the same 
effect can be achieved by requiring a res
tarted vault to update its list from a roster 
that was issued after the restart. 

The system could be subverted if the 
trustees were able to request enough partial 
keys to allow them to fabricate rosters. 
Such fabrication will be prevented by having 
vaults sign lists with their temporary private 
key as well as their permanent private key. 
This is a solution because the temporary 
private key will never leave the vault--even 
in a checkpoint--and will therefore be una
vailable to the trustees. 

4.2. Phantoms 
The previous subsection addressed the 

problem of maintaining a complete roster in 
spite of efforts which might isolate and des
troy anode's current vault. An additional 
threat is that a node's current vault might be 
kidnapped, and then kept alive. The kid
napping might even be undetected if a mock 
vault, which has presumably destroyed its 
own information content, is substituted for 
the kidnaped vault. Once the node of the 
kidnapped vault is brought back to life by 
the replacement of the kidnaped vault with a 
new vault, the kidnaped vault becomes a 
phantom. Phantoms can cause problems 
because they essentially split a node into two 
parts (the replacement and the phantom), 
each of whose lists may be incomplete with 
respect to restarts allowed after the split. 
We will first show how lists contributed by 
phantoms can be detected in rosters, and 
then how such detection can be used to 
keep phantoms from releasing their partial 
keys. 

Phantoms' lists will be revealed by 
including additional information in each list 
entry. Each temporary key in a list will be 

-, . -
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augmented by both the date on which it was 
passed, and the permanent public key that 
identifies the node to which it was passed. 
Consider the set of vaults that contribute 
lists to a particular roster, where one or 
more of these vaults are phantoms. One of 
the phantoms became a phantom first, when 
a majority of nodes alowed its replacement.'" 
At least one of the nodes of this majority 
must have contributed to the roster under 
consideration, because rosters contain lists 
from . a majority of nodes, and pairs of 
majorities overlap. This node's list will con
tain an entry with the same permanent pub
lic key as the phantom, but with a ditTerent 
temporary key. The phantom will be 
revealed because this entry will be preceded 
by another one in the roster with an earlier 
date, and the phantom's temporary key. 

Each vault will be required to check a 
current roster to make sure that it has not 
become a phantom, before it issues any par
tial keys. One way to provide current rost
ers might be to issue lists at the begining of 
each day. In a single day, however, a vault 
might give out a partial key based on its 
inspection of the day's roster, and the vault 
might be replaced (and thus become a phan
tom) based on inspection of the same roster 
by other nodes. 

A solution is to' require that requests 
for partial keys be made at least one day in 
advance. When a node receives a request 
for a restart, it adds an entry for it to its list 

__ '~> This entry contains the date on which the 
.. ' .. partial key will actually be released. A vault 

can now release partial keys on a particular 
day, in confidence that it will not become a 
phantom on that day, if that day's roster 
does not contain any proposals for the 
vault's own replacement. 

4.3. Cooling-off Periods 

An interesting ramification of these 
post-dated entries is that a cooling-otT period 
is provided, during which those who are 
dissatisfied with the certification of a pro
posed restart might have some recourse. 

·The argument easily generalizes to the case when 
multiple nodes became phantoms at once. All the 
participants in the roster could not have become 
phantoms at once because no majority could have 
existed to allow their replacement. 
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Provision might be made so that forces out
side the system could cause the trustees to 
request the network to abort a proposed res
tart, for which the partial keys had not yet 
been released. 

A single restart might involve two 
non-overlapping cooling-off periods. In the 
first, the certification process would be 
announced by list entries with the appropri
ate permanent public key, the end date of 
this cooling off period, and a blank entry for· 
the temporary public key. The second 
period is used to ensure that the trustees 
correctly transmit the displayed temporary 
key to the net work. When the trustees pro
vide a temporary public key, it will replace 
the previously blank part of the list entries, 
and their end dates will be advanced 
appropriately. Partial keys will be released 
only on or after the end date of the second 
period, and only if the restart has not been 
aborted. 

4.4. Corruption 

We have been assuming that once a 
vault is sealed, the secret keys it contains 
can not be discovered. If a sealed vault has 
somehow been opened without triggering 
the alarm, we say that it has been corrupted. 
Here, we will determine how many vaults 
must be corrupted to allow the checkpoints 
of every node in the network to be secretly 
decrypted. Without the partial keys of the 
trustees, every node would have to be cor
rupted. If the trustees participate (and it is 
easier to destroy a vault than to corrupt 
one), then the easiest way to obtain 
sufficient keys to decrypt the checkpoints of 
every node, is to corrupt enough nodes so 
that the rest of the network is divided in to 
two parts--each part just big enough to form 
a majority· when combined with the cor
rupted nodes. 

The two parts are isolated from each 
other so that the corrupted nodes can 
deceive each part into believing that the cor
rupted nodes and it are the remaining 
majority. Then, the trustees destroy one 
part after it supplies the partial keys required. 
to restart the other part. These partial keys, 
along with those obtained from the cor
rupted nodes, are sufficient to allow the 
trustees to decrypt the checkpoints of the 
surviving part. These checkpoints will in 



turn provide sufficient partial keys (when 
combined with those of the corrupted 
nodes) to decrypt the checkpoints of the 
destroyed part. The surviving part will 
rebuild the network and replace the cor
'rupted nodes, leaving a suspiciously large 
number of restarts as the only trace of the 
networks complete subversion. 

With the simple majority scheme con
sidered so far, the number of nodes that 
must be corrupted is one or two, depending 
on whether the network has an odd or an 
even number of nodes, respectively. The 
number of nodes that must be corrupted can 
be increased, at the expense of the number 
of nodes whos simultaneous death would 
disable the network. The number of nodes 
above a simple majority that is required for 
restarts, is the same as the number addi
tional nodes that must be corrupted to sub
vert a network. 

5. Real World Considerations 

We have made two assumptions about 
vaults. Except for the subsection on corrup
tion, we have assumed that the security pro
vided by the cryptographic techniques, the 
vault and its alarm are invincible. Secondly, 
we have assumed that mutually suspicious 
groups can know that a vault operates 
correctly, as a result of some certification 
procedure. We will consider the real world 
approximations to each of these assump
tions, in turn. 

Security is a relative thing. Bank 
vaults and their burglar alarms, for example, 
seem to provide a sufficient probability of 
detection relative to the potential pay-off. 
Similarly, the data encryption standard, 
although implemented by a single chip, may 
require a million chips to break [Diffie and 
Hellman 77], and would thus be an adequate 
deterrent for some applications. Other cryp
tographic algorithms may be nearly as easy 
to implement, but might require more com
putational power than could possibly be 
amassed, assuming that certain. aspects of 
our present understanding· of physics remain 
the same [Diffie and Hellman 76b). 
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5.1. Certification 

Absolute certainty about the physical 
world, however, is unobtainable in general. 
Effort must be expended to increase cer
tainty that a particular system' has some 
desired properties. Today, organizations 
spend considerable sums to periodically 
audit the state of their computer systems. 
The techniques presented in this paper do 
not have many of the inherent and practical 
limitations of audits. Before a vault is 
sealed, however, it must still be certified by 
people, whom others will have to trust. 

The certifiers of a vault must be con
vinced of two things: (I) that the plan for 
the vault has the properties the vault will be 
certified to have, and (2) that the vault con
forms to the plan. The first is beyond the 
scope of this paper (but see [De Millo, Lip
ton and Perl is 76]). The second will occupy 
the remainder of the paper. Since much of 
the plan is information that the vault is 
required to use (e.g. programs, trustees' 
public keys, and a roster of a particular date) 
it need only be signed by a sealed vault that 
is otherwise certified. 

There are a variety of approaches to 
the remainder of the second problem-
determining whether a physical device con
forms to the planr-each yielding some 
degree of trust for a given technology. 
Since different technologies may be used in 
a particular system (e.g. printed circuit 
boards, and integrated circuits), and 
different parts may be constructed by 
different groups, a number of different tech
niques may be combined for a particular sys
tem. 

One approach to certifying a device is 
simply, to inspect it. (This might be ade
quate to determine the interconnections pro
vided by a printed circuit board, e.g) Higher 
degrees of certainty and some technologies 
may require that the manufacturing process 
be observed as well. If a device is publicly 
chosen at random from a large collection of 
identical devices (integrated circuits, e.g.), 
then interested parties could choose addi
tional devices and destructively test them. 
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5.2. Multiple Constructors 

There is an alternative approach in 
which each certifying organization can pro
duce a subset of the modules which comprise 
a system. The modules are combined so 
that if the modules supplied by anyone 
organization conform to the plan, the whole 

,system will behave as if each. module con
formed to the plan. This approach differs 
from the previous techniques in that a 
certifier can render the vault inoperative by 
providing a malicious module. 

One way of combining a set of random 
number generator modules, each supplied 
by a different certifier, is by adding their 
outputs bit-wise modulo two. Redundant 
isolation modules for the power and 
input/output lines, which pass through the 
vault's shielding, would be arranged serially 
within the vault. Multiple alarm modules 
within the vault, possibly of different types, 
would make for a more secure vault. Relia
bility, in the form of immunity to false 
alarms, can be traded for security by a 
mechanism that requires more than one 
alarm be ,tripped before the memory content 
is erased. 

Each member of a set of redundant 
processor modules must have access to all of 
the vault's inputs. If the output of one par
ticular processor module' is used as the out
put for the entire vault, the other processors 
must be able to compare their output to its 
output, and have time to stop the output on 
its way through the isolation devices, before 
it leaves the vault's shielding. If, instead, 
the outputs of the processors were routed 
through a voting device, the system could 
be made more reliable at the expense of the 
security lost by allowing one or more pro
cessors to be ignored. 

If memory devices which will hold 
keys and other i.mportant information are 
supplied by mutually suspicious certifiers, 
each certifier may have to be concerned that 
some device' supplied by another certifier 
will improperly retain this information in an 
emergency. This problem can be solved if 
thermal pyrotechnic devices, like those 
employed for similar purposes by the mili
tary, are placed within the vault. Each 
certifier might then supply a pyrotechnic 
module. 
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When the modules are installed in the 
vault, it should be possible to certify their 
interconnections by inspection. Certifiers' 
jobs would not be completed until they had 
witnessed the sealing of the vault and the 
display of the public key. 

Summary and Conclusion 

The techniques described here provide 
secure computer systems that can be trusted 
by mutually suspicious groups. To the 
extent that such systems prove practical, 
those providing information to, or relying 
on the output of a computer system, will 
also insist on being able to trust it. 
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