
.. .. ' .

0--

:- .

- 0" 0

o.

.0

COMPUTER SYSTEMS

ESTABLISHED, MAINTAINED, AND TRUSTED BY

MUTUALLY SUSPICIOUS GROUPS

by

D. L. Chaum

Memorandum No. UCB/ERL M79/10

22 February 1979

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720'

t' •

. ~.

. . .

Computer Systems
Established, Maintained, and Trusted by

Mutually Suspicious Groups*

D. L. Chaum

ABSTRACT

A number of organizations who do not trust. one another can build and
repair a highly-secured computer system that they can all trust (if they can
agree on a workable design). Banking provides an example of the need for
these systems. Cryptographic techniques make such systems practical, by allow
ing stored and communicated data to be protected while only a small mechan
ism, called a vault, need be physically secured. Once a vault has been inspected
and sealed, any attempt to open it will cause it to destroy its own information
content, rendering the attack useless. A decision by a group of trustees can
allow such a vault--or even a physically destroyed vault--to be re-established
safely.

Networks of vaults, in which some active vaults are necessary to re
establish the network, have two advantages over single vault systems: (1) infor
mation that is no longer needed can be permanently destroyed, and (2) abuse
of the trustees'. power can be detected in advance. Each of some mutually
suspicious groups can supply part of a vault, in such a way that each group need
only trust its part in order to be able to trust the entire vault. Another
approach to construction is based on public selection of a system's component
parts at random from a large store of equivalent parts. The practicality and
ramificatio'ns of the ideas presented are also considered.

Introduction

Concern over the trustworthiness of
computer systems is growing as the use of
computers becomes more pervasive. It is
not enough that the organization maintain
ing a computer system trusts it~ many indi
viduals and organizations may need to trust
a particular computer system .

For example, consider a computer that
maintains the checking account balances of a
bank. The bank is concerned, among other
things, about possible loss of balance
records. The Federal Reserve Bank must
know the total of these balances, to ensure
that the legally required percentage of the
balances is on deposit with it. The Internal

Revenue Service requires the ability to
check the balance of an individual's account.
Individuals, or a COllsumer organization act
ing on their behalf, may wish to ensure that
disclosures are made known to those
involved, and that inquiries can never be
made on information that is more than a
few years old.

The thesis of this paper is that such
widely-trusted computer systems can be pro
vided, if a workable design is agreed on.
The cryptographic techniques which form
the basis of the approach are introduced in
the first section. They make such systems
practical by reducing the mechanism upon
which reliability and security depend. This

• This work was partially supported by the National Science Foundation under NSF Grant MCS75-23739.
Author's address: Computer Science Division, Electrical Engineering and Computer Sciences Department,
University of California. Berkeley. CA 94720. (415) 642-1024.

mechanism--the processor and its high speed
store--will be called a vall/I. A vault will be
physically secured by shielding it within a
small safe like container.

Begining in the second section, the
paper departs substantially from the litera
ture, and presents techniques that allow
mutually suspicious groups to maintain a
vault. In each of the third and fourth sec
tions, an advantage of systems comprised of
multiple vaults is presented. The fifth and
final section removes the assumptions of
perfect cryptographic and physical security,
and also describes practical approaches to
constructing and certifying these systems.

1. Cryptography

Information is encrypted to allow it to
pass safely through a hostile environment.
Traditionally, concern has centered on pro
viding the secrecy of communications. Con
sequently,· cryptographic techniques were
devised to make it very difficult (in some
cases impossible) to transform encrypted
information back to its unencrypted form
without possession of a secret piece of infor
mation, called a key. Two correspondents
who were the sole possessors of a key could
use it to maintain the secrecy of their
correspondences. Note that the crypto
graphic algorithms are assumed to be public
knowledge~ only the key need be kept
secret.

Ultimately, all cryptographic algo
rithms can be thought of as transforming
symbols into other symbols. With a Captain
Midnight decoder badge, the badge is the
key, and letters are mapped into other
letters. The un-breakable Vernam cipher
maps only single bits into other bits, by
adding each bit modulo two with a different
key bit [Kahn 67]. On the other extreme,
block cryptographic algorithms map large
strings of bits, called blocks, into other
blocks. The National Data Encryption Stan
dard, for example, maps 64 bit blocks into
64 bit blocks, using a 56 bit key [NBS 171.
Many blocks can be "chained" together dur
ing encryption, effectively forming a single
large block [Feistel 701.

- 2 -

1.1. Application of Cryptography

We will be interested in block
schemes, like the Data Encryption Standard,
which make it very difficult to modify part
of an encrypted block of information
without causing drastic changes to the entire
decrypted block. In such systems, a large
serial number can be added to a block
before encryption. Its presence after decryp
tion indicates that the block has not been
altered. Furthermore, it becomes extremely
difficult for someone without a key to create
a block that will contain a desired serial
number when it is decrypted by a keyholder.

Two communicants with a common
key can converse using encrypted blocks of
data, checking the serial number of each
received block to ensure that it has arrived
in the proper sequence, and to ensure that it
has not been altered [Feistel, Notz and
Smith 75]. One communicant might be a
vault, and the other might be a terminal
with a cryptographic capability. In a similar
way, encrypted blocks of data stored in
memory devices outside the vault are
checked on their return to verify that the
correct blocks were returned unaltered.

All information leaving, or returning
to a vault is in encrypted form; the unen
crypted form is only present within the
vault, or after being decrypted by communi
cants. Thus, data being stored or communi
cated is secured against tampering and
eavesdropping. However, it still must be
secured against ob~·truction or destruction.
To these ends, stored information might be
duplicated at remote sites, and redundant or
broadcast style communication channels
used. Because the material is safely
encrypted, the proliferation of copies poses
no threat to security.

1.2. Establishing a System

There is nothing secret about a vault
until it is sealed within its protective shield
ing. An unsealed vault can, therefore, be
freely inspected by any interested party. As
we shall see in section five, this is a prere
quisite to certification of the vault's mechan
ism by mutually SUSPICIOUS certifiers.
Assume, for now, that mutually suspicious
groups can know that a vault operates
correctly, as a result of some certification

~~

. "

..

'.

. .
~.

procedure.

Such certifiable vaults can be built with
the use of some relatively new cryptographic
techniques. Those considered so. far have
the unfortunate property that a common key
must be distributed to the communicants,
while it is kept secret from everyone else.
In contrast, consider a fundamentally
different sort of cryptographic algorithm
independently proposed by Diffie and Hell
man [76a], and Merkle [78]. To use these
algorithms, each participant creates a private
key, that is never revealed to anyone else.
A corresponding public key is made known
to everyone. We will be concerned with
public key .cryptographic algorithms (like
that of Rivest, Shamir and Adleman [78])
where the two keys are inverses of one
another, in the sense that that a block
encrypted with one can be decrypted only
with the other.

A message is encrypted with the
recipient's public key before being sent.
Only the intended recipient can decrypt the
received message, because the correspond
ing private key must be used to decrypt it.
(A key-sized random serial number should
be included in the message, because other
wise a guessed message would be verified if
it proved identical to the original when it too
was encrypted with the public key.) Some
one signs a message by encrypting it with
their private key. If a serial number of all
zeros is included in the message before it is
signed, its presence after decryption with the
corresponding public key would verify the
signature.

When the vault is sealed, a suitable
public key and its inverse private key are
chosen by a mechanism within the vault's
shielding, using a physically random process
[Knuth 69]. The public key is then
displayed outside the vault, on a special dev
ice certified for this purpose. As far as the
world outside the vault is concerned, the
possessor of the vault's private key is the
vault: it can read confidential messages sent
to the vault, and it can make the vault's sig
nature.

- 3 -

.t

2. What if Something Goes Wrong?

If a vault were totally destroyed, com
putation would be safely halted--no secret
information would be revealed. and the
vault would not have taken any improper
action. Other conditions might require an
equally safe halt to computation. If an
alarm device detects an attempt to penetrate
the vault's shielding, or a fail-safe mechan
ism determines that the vault's contents can
no longer be counted on to operate
correctly, then the information stored in the
vault, including the vault's private key,
must be erased.

This information will be encrypted in a
special way, and saved outside the vault, so
that a safe recovery can be provided. The
encryption of the vault's contents, which
includes its private key, is called a check
point, and is detailed below. At suitable
intervals, checkpoints are formed, and then
stored outside the vault. In some cases,
there may be time to issue un-scheduled
checkpoints before an emergency requires
the vault's contents to be erased.

The primary consideration behind the
design of an encryption method for check
points is that there exists a means to decrypt
them, but only at the appropriate time and
place. The decision that some newly sealed
vault can, and should, be given the ability to
decrypt a checkpoint is necessarily a human
one. Assume, for now, that the decision is
to be made by unanimous consent of a set
of trustees. A checkpoint is successively re
encrypted with each of a set of keys, one
key for each trustee. Conventional as
opposed to public key cryptography will be
used for this. The keys used to encrypt the
checkpoint are called partial keys, as they
must all be obtained to decrypt the check
point. The partial keys are randomly gen
erated within the vault.

Public key cryptography will be used to
distribute the partial keys to the trustees in a
secure manner. Before it is sealed, the vault
is supplied with a public key issued by each
trustee. Then, the vault ensures the
confidentiality of the the partial key it sends
each' trustee by encrypting it with the
trustee's public key. Each trustee now has
two keys to keep secret: a private key used
to decrypt messages received, and a partial

j

key that will be used in connection with
decrypting checkpoints.

2.1. Restarts

A restart is . the process by which a
freshly sealed vault resumes the computa
tion whose state has been saved in a check
point. After a replacement vault is certified
and sealed, it forms a temporary public key
and its inverse private key from a random
seed, and then 'displays the temporary public
key, as the permanent public key was
displayed in the original start-up. Then the
restarting vault receives partial keys from
the trustees. A trustee provides the secrecy
of its partial key while it is in transit to the
vault by encrypting it with the displayed
temporary public key.

Having received and decrypted the par
tial keys, the computation within the
replacement vault decrypts the checkpoint.
It then bootstraps itself into the state saved
in the checkpoint. Thus, the original public
key found in the checkpoint is 'reinstated,
and the computation withing the replacing
vault becomes an exact copy of the original
computation. The restarted vault could be
safely brought back up to date by re-playing
all the messages sent it since the checkpoint
was made.

2.2. More Flexible Decision Making

We have assumed that a consensus of
the trustees is required for a restart, but a
more flexible arrangement may be more
useful in practice. One approach would be
to create multiple copies of a checkpoint,
each encrypted with a different subset of the
partial keys, so that a consensus of the
trustees holding the partial keys in anyone
of the subsets could authorize a restart. For
example, the subsets that would be used to
allow a simple majority of the trustees to
cause a restart are all the distinct subsets of
the partial keys that contain just enough par
tial keys to constitute a simple majority.

Forming many multiply encrypted
checkpoints is clumsy at best, and is
undesirable because it should be possible to
prepare checkpoints quickly in an emer
gency. It is possible to achieve the same
effect, however, while encrypting each
checkpoint only once--with a single key.

- 4 -

Copies of this key are encrypted with the
subsets of the partial keys, just as the copies
of the checkpoint itself were encrypted in
the previous scheme. These multiply
encrypted copies of the key used to encrypt
the checkpoint are generated when the vault
is originally established.'" They can only be
used by a restarting vault, once it has
received a valid subset of partial keys.

3. Multiple Vaults

Up until now we have been concerned
with the operation of a single vault. In this
section,' systems that use multiple active
vaults are shown to have a major advantage
over single vault systems. They can make it
impossible for anyone, including the
trustees, to reconstruct obsolete informa
tion.

We have seen how a disabled vault can'
be replaced by a freshly sealed vaUlt, during
a restart that uses a checkpoint issued by a
disabled vault. The new vault is identified
by the same permanent public key and will
embody the same computation as its dis
abled predecessor. It is possible that a suc
cession of vaults will be formed at a particu
lar site, each restarted from a checkpoint
issued by the preceding vault, and all
embodying the same computation. It will
often be useful to refer to this computation
itself, without regard to a particular active
vault. The computation will be called a
node.

This section is based on systems which
involve multiple nodes. The node at a par
ticular site will be identified by its unique
permanent public key. It will be convenient
to refer to a set of nodes collectively as a
network. When things are running
smoothly, the nodes of a network will each'
have a currently active vault~ when a node's
active vault is forced to destroy its informa
tion content, however, the node will lack an

Provision for a majority vote of 24 trustees would
require 2.496.144 copies of the key. These could
be generated by well known algorithms and placed,
for example. on a single magnetic tape. This ap
proach becomes impractical with many more
trustees. A cryptographic analogue to the Electoral
College, in which intermediate keys serve the pur

. pose of electors. could be used for much larger
numbers of trustees.

...

active vault until it is restarted.

3.1. Destruction of Information

In a single vault system, the partial
keys held by the trustees will always be
sufficient to decrypt any previous check
point. Thus, the trustees will have access to
all information, no matter how old the
information is. In contrast, information that
is no longer needed in a system with multi
ple active vaults (i.e. a netWork) can be
made permanently inaccessible by destroying
the keys needed to decrypt it. In order to
limit access to obsolete checkpoints, at least
some of the partial keys must be destroyed.
The network will be able to ensure that
sufficient partial keys are desfroyed, because
it alone will maintain some critical partial
keys.

When a node forms its partial keys, it
does so in such a way that one additional
partial key is always necessary to decrypt
checkpoints. This partial key is distributed
to the other nodes of the network, and not
to the human trustees. When the current
vault of a node dies and the node must be
restarted, the human trustees will provide
their partial keys as before, but the restart
can not continue until the missing partial
key is supplied by one of the other nodes.
This node might require a signed request
from each human trustee of the restarting
node before it releases .the partial key it
holds. These requests would include the
temporary public key displayed during the
restart, so that the vault trustee can send its
partial key directly to the restarting vault.

Each node of the network might have
partial keys sufficient to allow it to assist the
human trustees of any other node in need of
restart. Then, even if every active vault in
the network but one were destroyed, the
surviving vault and the human trustees of
the other nodes could rebuild the network.
If every node were in need of a restart at
once, however, the network would be per
manently disabled. This possibility could be
made acceptably remote by the inclusion of
at least some fault-tolerant nodes, possibly
at highly secured locations.

Periodically, say once a year, all keys
in the network that could be used to decrypt
information that is no longer needed,

- 5 -

including the permanent private keys, would
be changed. Each node will issue a new
public key, signed with its old private key.
New partial keys, however, need only be
issued to the vault trustees; the partial keys
issued to the human trustees need not be
changed. Checkpoints of previous years
could no longer be decrypted, because this
would require partial keys that were erased
once the entire key change had been com
pleted successfully.

4. Further Limits on the Trustees' Power

In the previous section, we have been
able to force the trustees to request certain
partial keys of the network in order to
obtain enough partial keys to decrypt a
checkpoint. We have seen that if the net
work changes the keys used to form check
points, and the partial keys it releases, it can
keep obsolete checkpoints from being
decrypted. This section will be devoted to
an approach to allowing the network to keep
a comprehensive record of the partial keys it
releases. Such a record is very useful
because it can ensure that only certified
vaults have decrypted checkpoints, and that
they have done so only during certified res
tarts.

One possible approach to providing
such a record is presented in the following
subsection. The next subsection augments
this approach to cover the possibility of
stolen vaults. The utility of mandatory
cooling-off periods for restarts is explored in
the third subsection, and the fourth and
final subsection of this section looks at the
effort required to subvert the record main
tained by a network.

4.1. Rosters

A network must issue its partial keys
to a restarting vault on the trustees' request,
but the network itself will maintain a record
of the recipients of all the partial keys it has
released. Since the only legitimate recipient
of these partial keys is a restart, the reci
pient will be identified by its temporary key.
Periodically, say once a day, the network
will be able to issue a roster of all the tem
porary keys with which partial keys have
been released.

If each node has sufficient partial keys

4

to allow the trustees to restart any other
node, then accurate rosters can not be
guaranteed in general. To see this, consider
the following scenario: the trustees usurp a
node's current vault and deny it contact with
the rest of the network, so that it thinks it is
the only node not in need of restart. Then,
they request it to supply its partial keys to
fictitious restarts, whose temporary keys
they have fabricated. Once it has divulged
the partial keys, they destroy it, along with
any record it tried to maintain of the res
tarts; so that no subsequent roster can con
tain the bogus temporary public keys.

One solution is to appoint a particular
highly protected node as the giver of partial
keys and issuer of rosters. If it were des
troyed, rosters would no longer be issued,
and restarts would no longer be possible.
Instead of a single node, a fixed subset of
nodes might be used. We will describe a
scheme in which only a majority of the
nodes of such a subset will be required to
distribute partial keys and to issue rosters. *

For simplicity and concreteness we
consider the case in which the subset
comprises the entire network. This implies
that at least a majority of the nodes of the
network must be active at all times, other
wise restarts would no longer be possible.
Partial keys created with the techniques that
allowed arbitrary subsets of partial keys to
be sufficient will be used in such a way that
only a simple majority of the vault trustees,
along with a consensus of the human
trustees, will be required for a restart. Each
node maintains a list of the temporary keys
that it has used to transmit partial keys.
Signed and dated copies of a node's list are
made public daily. A collection of such
lists, made up of lists from a majority of the
nodes, will be a roster.

The temporary keys of all previous
restarts must be represented in every
succeeding roster. To see this, notice that

* A slight generalizati'on of the argument in the
preceding paragraph shows why less than a majori
ty is insufficient in a homogeneous subset. A deci
sion not requiring unanimous consent of a subset
(like majority voting) allows a subset that has lost
some members, but not enough to stop it from
making decisions, to change its members and even
its size.

- 6 -

there is at least one node in any succeeding
roster that has participated in any previous
restart, since the majority of nodes whos
lists are represented in the roster must over
lap in at least one node with the majority
that allowed a restart. The list of a restarted
node must be brought up to date to reflect
any partial keys released after the creation of
the checkpoint used in the restart. One
need not rely on a restarted node's having
been brought back up to date (by re-playing
messages sent it, as described earlier) to
ensure that its list is up to date; the same
effect can be achieved by requiring a res
tarted vault to update its list from a roster
that was issued after the restart.

The system could be subverted if the
trustees were able to request enough partial
keys to allow them to fabricate rosters.
Such fabrication will be prevented by having
vaults sign lists with their temporary private
key as well as their permanent private key.
This is a solution because the temporary
private key will never leave the vault--even
in a checkpoint--and will therefore be una
vailable to the trustees.

4.2. Phantoms
The previous subsection addressed the

problem of maintaining a complete roster in
spite of efforts which might isolate and des
troy anode's current vault. An additional
threat is that a node's current vault might be
kidnapped, and then kept alive. The kid
napping might even be undetected if a mock
vault, which has presumably destroyed its
own information content, is substituted for
the kidnaped vault. Once the node of the
kidnapped vault is brought back to life by
the replacement of the kidnaped vault with a
new vault, the kidnaped vault becomes a
phantom. Phantoms can cause problems
because they essentially split a node into two
parts (the replacement and the phantom),
each of whose lists may be incomplete with
respect to restarts allowed after the split.
We will first show how lists contributed by
phantoms can be detected in rosters, and
then how such detection can be used to
keep phantoms from releasing their partial
keys.

Phantoms' lists will be revealed by
including additional information in each list
entry. Each temporary key in a list will be

-, . -

, }

t.

augmented by both the date on which it was
passed, and the permanent public key that
identifies the node to which it was passed.
Consider the set of vaults that contribute
lists to a particular roster, where one or
more of these vaults are phantoms. One of
the phantoms became a phantom first, when
a majority of nodes alowed its replacement.'"
At least one of the nodes of this majority
must have contributed to the roster under
consideration, because rosters contain lists
from . a majority of nodes, and pairs of
majorities overlap. This node's list will con
tain an entry with the same permanent pub
lic key as the phantom, but with a ditTerent
temporary key. The phantom will be
revealed because this entry will be preceded
by another one in the roster with an earlier
date, and the phantom's temporary key.

Each vault will be required to check a
current roster to make sure that it has not
become a phantom, before it issues any par
tial keys. One way to provide current rost
ers might be to issue lists at the begining of
each day. In a single day, however, a vault
might give out a partial key based on its
inspection of the day's roster, and the vault
might be replaced (and thus become a phan
tom) based on inspection of the same roster
by other nodes.

A solution is to' require that requests
for partial keys be made at least one day in
advance. When a node receives a request
for a restart, it adds an entry for it to its list

__ '~> This entry contains the date on which the
.. ' .. partial key will actually be released. A vault

can now release partial keys on a particular
day, in confidence that it will not become a
phantom on that day, if that day's roster
does not contain any proposals for the
vault's own replacement.

4.3. Cooling-off Periods

An interesting ramification of these
post-dated entries is that a cooling-otT period
is provided, during which those who are
dissatisfied with the certification of a pro
posed restart might have some recourse.

·The argument easily generalizes to the case when
multiple nodes became phantoms at once. All the
participants in the roster could not have become
phantoms at once because no majority could have
existed to allow their replacement.

- 7 -

Provision might be made so that forces out
side the system could cause the trustees to
request the network to abort a proposed res
tart, for which the partial keys had not yet
been released.

A single restart might involve two
non-overlapping cooling-off periods. In the
first, the certification process would be
announced by list entries with the appropri
ate permanent public key, the end date of
this cooling off period, and a blank entry for·
the temporary public key. The second
period is used to ensure that the trustees
correctly transmit the displayed temporary
key to the net work. When the trustees pro
vide a temporary public key, it will replace
the previously blank part of the list entries,
and their end dates will be advanced
appropriately. Partial keys will be released
only on or after the end date of the second
period, and only if the restart has not been
aborted.

4.4. Corruption

We have been assuming that once a
vault is sealed, the secret keys it contains
can not be discovered. If a sealed vault has
somehow been opened without triggering
the alarm, we say that it has been corrupted.
Here, we will determine how many vaults
must be corrupted to allow the checkpoints
of every node in the network to be secretly
decrypted. Without the partial keys of the
trustees, every node would have to be cor
rupted. If the trustees participate (and it is
easier to destroy a vault than to corrupt
one), then the easiest way to obtain
sufficient keys to decrypt the checkpoints of
every node, is to corrupt enough nodes so
that the rest of the network is divided in to
two parts--each part just big enough to form
a majority· when combined with the cor
rupted nodes.

The two parts are isolated from each
other so that the corrupted nodes can
deceive each part into believing that the cor
rupted nodes and it are the remaining
majority. Then, the trustees destroy one
part after it supplies the partial keys required.
to restart the other part. These partial keys,
along with those obtained from the cor
rupted nodes, are sufficient to allow the
trustees to decrypt the checkpoints of the
surviving part. These checkpoints will in

turn provide sufficient partial keys (when
combined with those of the corrupted
nodes) to decrypt the checkpoints of the
destroyed part. The surviving part will
rebuild the network and replace the cor
'rupted nodes, leaving a suspiciously large
number of restarts as the only trace of the
networks complete subversion.

With the simple majority scheme con
sidered so far, the number of nodes that
must be corrupted is one or two, depending
on whether the network has an odd or an
even number of nodes, respectively. The
number of nodes that must be corrupted can
be increased, at the expense of the number
of nodes whos simultaneous death would
disable the network. The number of nodes
above a simple majority that is required for
restarts, is the same as the number addi
tional nodes that must be corrupted to sub
vert a network.

5. Real World Considerations

We have made two assumptions about
vaults. Except for the subsection on corrup
tion, we have assumed that the security pro
vided by the cryptographic techniques, the
vault and its alarm are invincible. Secondly,
we have assumed that mutually suspicious
groups can know that a vault operates
correctly, as a result of some certification
procedure. We will consider the real world
approximations to each of these assump
tions, in turn.

Security is a relative thing. Bank
vaults and their burglar alarms, for example,
seem to provide a sufficient probability of
detection relative to the potential pay-off.
Similarly, the data encryption standard,
although implemented by a single chip, may
require a million chips to break [Diffie and
Hellman 77], and would thus be an adequate
deterrent for some applications. Other cryp
tographic algorithms may be nearly as easy
to implement, but might require more com
putational power than could possibly be
amassed, assuming that certain. aspects of
our present understanding· of physics remain
the same [Diffie and Hellman 76b).

- 8 -

5.1. Certification

Absolute certainty about the physical
world, however, is unobtainable in general.
Effort must be expended to increase cer
tainty that a particular system' has some
desired properties. Today, organizations
spend considerable sums to periodically
audit the state of their computer systems.
The techniques presented in this paper do
not have many of the inherent and practical
limitations of audits. Before a vault is
sealed, however, it must still be certified by
people, whom others will have to trust.

The certifiers of a vault must be con
vinced of two things: (I) that the plan for
the vault has the properties the vault will be
certified to have, and (2) that the vault con
forms to the plan. The first is beyond the
scope of this paper (but see [De Millo, Lip
ton and Perl is 76]). The second will occupy
the remainder of the paper. Since much of
the plan is information that the vault is
required to use (e.g. programs, trustees'
public keys, and a roster of a particular date)
it need only be signed by a sealed vault that
is otherwise certified.

There are a variety of approaches to
the remainder of the second problem-
determining whether a physical device con
forms to the planr-each yielding some
degree of trust for a given technology.
Since different technologies may be used in
a particular system (e.g. printed circuit
boards, and integrated circuits), and
different parts may be constructed by
different groups, a number of different tech
niques may be combined for a particular sys
tem.

One approach to certifying a device is
simply, to inspect it. (This might be ade
quate to determine the interconnections pro
vided by a printed circuit board, e.g) Higher
degrees of certainty and some technologies
may require that the manufacturing process
be observed as well. If a device is publicly
chosen at random from a large collection of
identical devices (integrated circuits, e.g.),
then interested parties could choose addi
tional devices and destructively test them.

-~

. .. .•

-.. .,

o '

',\'

5.2. Multiple Constructors

There is an alternative approach in
which each certifying organization can pro
duce a subset of the modules which comprise
a system. The modules are combined so
that if the modules supplied by anyone
organization conform to the plan, the whole

,system will behave as if each. module con
formed to the plan. This approach differs
from the previous techniques in that a
certifier can render the vault inoperative by
providing a malicious module.

One way of combining a set of random
number generator modules, each supplied
by a different certifier, is by adding their
outputs bit-wise modulo two. Redundant
isolation modules for the power and
input/output lines, which pass through the
vault's shielding, would be arranged serially
within the vault. Multiple alarm modules
within the vault, possibly of different types,
would make for a more secure vault. Relia
bility, in the form of immunity to false
alarms, can be traded for security by a
mechanism that requires more than one
alarm be ,tripped before the memory content
is erased.

Each member of a set of redundant
processor modules must have access to all of
the vault's inputs. If the output of one par
ticular processor module' is used as the out
put for the entire vault, the other processors
must be able to compare their output to its
output, and have time to stop the output on
its way through the isolation devices, before
it leaves the vault's shielding. If, instead,
the outputs of the processors were routed
through a voting device, the system could
be made more reliable at the expense of the
security lost by allowing one or more pro
cessors to be ignored.

If memory devices which will hold
keys and other i.mportant information are
supplied by mutually suspicious certifiers,
each certifier may have to be concerned that
some device' supplied by another certifier
will improperly retain this information in an
emergency. This problem can be solved if
thermal pyrotechnic devices, like those
employed for similar purposes by the mili
tary, are placed within the vault. Each
certifier might then supply a pyrotechnic
module.

- 9 -

When the modules are installed in the
vault, it should be possible to certify their
interconnections by inspection. Certifiers'
jobs would not be completed until they had
witnessed the sealing of the vault and the
display of the public key.

Summary and Conclusion

The techniques described here provide
secure computer systems that can be trusted
by mutually suspicious groups. To the
extent that such systems prove practical,
those providing information to, or relying
on the output of a computer system, will
also insist on being able to trust it.

Acknowledgements

I would like to express my gratitude to
the following people who have carefully read
and commented on various drafts of this
paper: Mike Clancy, Doug Cooper, Bob
Fabry, Richard Fateman, Chip Martel, Ber
nard Mont-Reynaud, Annie Moose, Carlo
Sequin, Michael Turner, Stu Wecker, and
Tim Winkler.

- 10 -

References

De Millo, R.A., Lipton, RJ. an,d Perlis, AJ., "Social Processes and Proofs of Theorems,"
Report, Georgia Institute of Technology, Atlanta, Nov. 1976.

Diffie, W. and Hellman, M.E., "Multiuser Cryptographic Techniques," Nat. Compo Conf. 1976a,
pp.l09-112.

Diffie, W. and Hellman, M.E., "New Directions in Cryptography," IEEE Transactions on Infor
mation Theory, vol. IT-22, Nov. 1976b, pp. 644-654.

Diffie, W. and Hellman, M.E., "Exhaustive Cryptanalysis of the N.B.S. Data Encryption Stan
dard," IEEE Computer, vol. 10, no. 6, June 1977, pp. 74-84.

Feistel, H., "Cryptographic Coding for Data-Bank Privacy," IBM research report RC-2827,
Yorktown Heights, N.Y., March 1970.

Feistel, H., Notz, W. and Smith, J., "Some Cryptographic Techniques for Machine-to-Machine
Data Communications," Proceedings of IEEE, vol. 63, no. 11, Nov. 1975, pp. 1545-1554.

Kahn, D., "The Code Breakers, The Story of Secret Writing," Macmillan Co., 1967, p. 395.

Knuth, D., "The Art of Computer Programming, Vol. 2, Semi-Numerical Algorithms,"
Addison-Wesley, Reading, Mass., 1969, pp. 2-3.

Merkle, R.C., "Secure Communications over Insecure Channels," Comm. ACM, vol. 21, no. 4,
April 1978, pp. 294-299.

National Bureau of Standards, "Data Encryption Standard," F.I.P.S. Pub. 46, Jan. 1977.

Rivest, R., Shamir, A. and Adleman, L., "A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems," Comm. ACM, vol. 21, no. 2, Feb. 1978, pp. 120-126.

..,

	Copyright notice 1979
	ERL-79-10

