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Abstract
There is increasing interest in promoting participa-
tory democracy, in particular by allowing voting by
mail or internet and through random-sample elec-
tions. A pernicious concern, though, is that of vote
buying, which occurs when a bad actor seeks to buy
ballots, paying someone to vote against their own
intent. This becomes possible whenever a voter
is able to sell evidence of which way she voted.
We show how to thwart vote buying through de-
coy ballots, which are not counted but are indistin-
guishable from real ballots to a buyer. We show
that an Election Authority can significantly reduce
the power of vote buying through a small number
of optimally distributed decoys, and model societal
processes by which decoys could be distributed.

1 Introduction
The goal of participatory democracy [Goel and Lee, 2016;
Lee et al., 2014] is to engage citizens more frequently and
with more granularity in the decision-making processes of
government bodies. Technologies that can help with this tran-
sition are those that support voting from the home by mail or
over the internet, and that make use of random sample elec-
tions, in which a representative subsample of the population
is tasked with voting on a particular issue, allowing partici-
patory democracy to function without everyone needing to be
concerned with every issue.

A pernicious concern, though, is that of vote buying, where
a bad actor attempts to gain improper influence in an elec-
tion by purchasing ballots from voters and paying them to
vote against their intent. The practical implications of this
are manifold, since the social construct of elections relies
on the perception of reliability and fairness. Vote buying
has been an everlasting threat to democracy; for example, a
survey shows that in the 1996 Thai general elections “one
third of households were offered money to buy votes at the
last general election” [Phongpaichit et al., 2000]. Schaf-
fer [2007a] mentions that “[Vote buying]... is making an im-
pressive comeback...it seems, a blossoming market for votes
has emerged as an epiphenomenon of democratization”. New
technologies can make the situation worse. For example, web
platforms can serve as middlemen, digital currency supports

anonymous payments, and abundant data coupled with ma-
chine learning can help buyers discover entrapment schemes
as well as identify voters to target with offers.

In this paper, we show that vote buying can be thwarted by
distributing decoy ballots, which are not counted, in addition
to real ballots. A vote buyer will not know whether a ballot is
real or decoy, and thus, decoys (if sold) may deplete a buyer’s
budget. Voters who know that they have a decoy ballot are
motivated to sell their ballots to a buyer, both for reasons of
profit and out of civic duty, wanting to maintain the election’s
integrity. David Chaum earlier introduced the notion of ran-
dom sample voting, and proposed decoy ballots in order to
address the potential problem of vote buying in remote elec-
tions generally and for random sample voting in particular.
He has also introduced the key notion of proof of decoy (see
Section 2). We study how to distribute decoy ballots, and an-
alyze the power of this approach.

We assume that real ballots impose a high cost on society,
for the reason that it takes effort for citizens to become in-
formed about an issue and vote appropriately, thus represent-
ing their considered opinion on an issue.1 Without the will-
ingness to invest this effort, methods of participatory democ-
racy may ultimately fail. For example, a simple calculation
for the US shows that if we assume that 200M people will
participate, and there are about 12,000 issues to decide per
year,2 then assuming that voters are willing to engage three
times a year, we have a maximum of 50,000 voters per issue.
At this scale, vote buying, especially on contentious issues,
may pose a severe problem. Turning to decoy ballots, we
model these as costly but not so costly that the number of de-
coys to distribute cannot be considered as a design decision
of the Election Authority. The cost of decoys comes about
because, to be effective, voters need to be willing to go to the
effort to sell the ballot (and thus, cast the ballot and prove
which way it was cast) if approached by a buyer. But because
any ballot cast is not ultimately counted, there is less empha-
sis on a voter needing to research an issue to form an opinion.

Although we situate our discussion in a societal context,
similar themes can be imagined for economies of AIs [Parkes

1In some approaches, this cost comes about, in addition, as a
result of needing to physically mail ballots [Chaum, 2016].

2This represents the approximate voter population and the num-
ber of issues before Congress per year, assuming 2 issues per bill.



(a) optimal defense (b) civic duty defense (c) auction-based defense

Figure 1: Examples of type distribution f(θ), decoy distribution ψ(θ), and desirability to buyer h(θ) for (a) an optimal defense, (b) a civic
duty defense with max type requesting a decoy xC = 0.5 and 10% decoy ballots, (c) an auction-based defense with max type assigned a
decoy xA = 0.5 and 50% decoy ballots. Here f = Beta(1, 2).

and Wellman, 2015], where it is desired to elicit and fairly
aggregate multiple opinions, but would not be scalable to re-
quest input from every agent all the time.

1.1 Our Contributions
We provide a formal model of vote buying, including a char-
acterization of the vote buyer’s behavior and an optimal pol-
icy for distributing decoy ballots by the Election Authority
(EA). In addition, we model two societal processes by which
decoys could be distributed—these approaches freeing the
EA of any concern that it could be seen to be biasing the
outcome of an election when distributing decoys in any way
other than reflecting a random sample of the population. In
simulation, we show that the EA can make effective use of
decoy ballots to maintain election integrity (e.g., reducing the
probability that the buyer changes the outcome to less than
1%). For the optimal defense, we are able to achieve this
by adding a small number of decoys that are proportional in
quantity to the number of ballots the buyer can afford to buy.
Interestingly, a “civic duty defense” that allocates decoys to
a random subset of those who request one is almost as ef-
fective as the optimal defense in which the EA optimizes the
distribution of voter types that receive decoys.

1.2 Related Work
There are numerous studies on vote buying, for exam-
ple [Stokes et al., 2013; Vicente, 2014; Finan and Schechter,
2012; Schaffer, 2007b]. These include game-theoretic mod-
els of vote buying, but none that consider the role of de-
coy ballots. In Dekel et al. [2008], the game is played by
the candidates themselves buying votes, Groseclose and Sny-
der [1996] study vote buying in legislative bodies and ana-
lyze the optimal coalition size. Vicente [2013] studies the
incumbency advantage in a vote buying game. Within AI,
the problem studied here related to studies of control (ma-
nipulation of the election structure, including changing the
candidate slate) and bribery (voters are paid by an inter-
ested party to vote a certain way) as studied in computational
social choice [Brandt et al., 2016; Faliszewski and Rothe,
2016]. In particular, the lobbying problem considers an elec-
tion with a binary outcome on a number of issues, and the
vote buyer has a total budget that can be expended across
all issues [Christian et al., 2007; Bredereck et al., 2014;
Binkele-Raible et al., 2014]. Ours is a special case with a
single issue, but whereas previous research has focused on

using computational complexity as a barrier against bribery
and control, we adopt a game-theoretic model and study the
power of decoy ballots. There is also a conceptual connec-
tion with work on security games [Tambe, 2011], where the
approach is to use game theory to design optimal strategies to
prevent losses from terrorist attacks.

2 The Model
We assume that there is a large population of possible voters,
and that this is a binary choice election with possible votes
YES and NO. For expositional simplicity, we assume that all
voters who receive a real ballot will place a vote. Similarly,
we assume that every voter for whom it is profitable to sell a
ballot (decoy or otherwise) will try to sell the ballot.3
The voters. Each voter i has an immutable, publicly-
observable voter type, θi, which indicates the probability that
a random voter with this type will vote YES. We can think
about θi as the prior that a voter will vote YES before she
has carefully considered the merits of an issue. Voter types
are drawn independently from a voter type distribution with
probability density f , assumed to have full support on [0, 1].
We assume without loss of generality that Ef [θ] < 1/2, i.e.,
that the outcome of the election without any interference by a
buyer and with enough real ballots is NO.
The buyer. We model a single, budget-limited buyer. Given
our assumption that Ef [θ] < 1/2, we consider the interesting
case of a YES-buyer, meaning that the buyer wants the elec-
tion outcome to be YES. To keep things simple, we assume
the buyer can find the voters with ballots, and will offer the
same price p > 0 to each voter in some subset of these voters.
The buyer has a budget B, representing the number of ballots
that he can afford to purchase at price p, and has no utility for
unspent budget. The buyer selects a random subset of voters
if more respond to the offer than he can afford.

Conditioned on whether a voter’s intent is to vote NO or
YES, and whether they have a real or decoy ballot, all vot-
ers have the same utility function in regard to whether or not
to sell. In particular, simple analysis yields that this order-
ing of the minimum price that a voter will require in order to
agree to sell a ballot is real-NO > real-YES > decoy-YES >
decoy-NO. For example, any price that is acceptable to a

3It is simple to generalize the model so that the people who ac-
tually cast ballots are sampled uniformly from those who receive
ballots, and similarly for those who try to sell ballots.
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Figure 2: Comparing the power of different defenses, with f = Beta(2, 4), 1000 ballots in total (some real, some decoy), and different
buyer budgets B. (a) Optimal defense, varying the fraction of real ballots. (b) Civic duty defense, with the EA optimizing the number of
decoy ballots to use for each value of parameter xC (the ‘max type requesting decoy’). (c) Auction-based defense, with the EA optimizing the
number of decoys to use for each value of xA (the ‘max type assigned a decoy’).

“real-YES” voter (real ballot, intent to vote YES) is also ac-
ceptable to “decoy-YES” and “decoy-NO” voters. Ballots
from decoy-NO voters are the cheapest to buy.4

Based on this, the real-NO votes—and the only ones the
buyer is interested in—are the most expensive ballots to buy.
Because of this, we assume the buyer will set price p high
enough for a real-NO voter to agree to sell if approached.
This could be set based on market research, for example.
The game form. The voters who receive a real ballot are
a random subset of the population, and thus with types that
follow f . The choice of how to distribute decoy ballots is, in
general, a design decision. Let ψ denote the density function
for this decoy ballot distribution. Modeled as a sequential-
move game, the election proceeds in three stages:

(1) the EA distributes some number of real and decoy bal-
lots, with the number and type distribution of real ballots as-
sumed fixed, but the number of decoy ballots, and perhaps
type distribution ψ a design decision.

(2) the buyer learns who has received a ballot (possibly a
decoy) and chooses to offer price p to each voter in some
subset of voters who have (real or decoy) ballots. The voters
who receive an offer decide whether or not to sell. The buyer
breaks ties at random if multiple voters agree to sell.

(3) Both real and decoy ballots are cast, and the real ballots
are tallied to determine the outcome. The buyer makes pay-
ments to voters who agreed to sell and provide a proof that
they vote YES.

Both distribution f and the type of each voter is common
knowledge. Our analysis will focus on the subgame perfect
equilibrium of this game. Throughout, the voters have a sim-
ple equilibrium behavior—agree to sell if offered a price p
(which will, in equilibrium, be high enough to be acceptable.)
Proof of decoy. We assume the existence of a proof-of-decoy,
which lets a voter with a decoy prove to anyone that she has

4To understand this ordering, consider that a voter with a real
ballot has a cost for selling, representing the possibility of being
caught. In addition, voters that intend to vote NO prefer not to
change their vote and vote YES. Thus, these are the most expensive
votes to buy. Analogously, decoy-YES ballots are more expensive
to buy than decoy-NO ballots because a voter who would vote NO
(if she had a real ballot) has higher value for depleting the budget of
a YES-buyer than a voter who would vote YES.

a decoy. On the other hand, there is no way to prove the
authenticity of a real ballot. This property is easy to support
through standard cryptographic primitives; see, for example,
Chaum [2016].5
EA and buyer objectives. We take as the objective of the EA
that of maintaining election integrity, and thus minimizing the
probability that the buyer changes the election outcome. In
contrast, the interests of the buyer are diametrically opposed,
and he wants to maximize the probability that the outcome of
the election is changed.

3 Buyer Analysis
Given the buyer’s objective, the best response of the buyer to
the EA is to maximize the expected number of real-NO bal-
lots that he buys, given his budget B and knowledge about
voters’ types (probability of voting YES). Let I ⊆ [0, 1] de-
note the subset of voter types from which the buyer buys; in
particular, the buyer will buy every ballot held (real or decoy)
by voters of these types. Let nr denote the number of real
ballots and nd the number of decoy ballots. The buyer wants
to select the subset I to solve:

max
I

∫
I

nr
nr + nd

(1− θ)f(θ)dθ s.t.
∫
I
nrf(θ) + ndψ(θ)dθ ≤ B.

In this way, the buyer maximizes a quantity that is propor-
tional to the expected number of real-NO ballots purchased,
subject to the total budget. Let h(θ) denote the probability
that a ballot is real-NO given type θ. By Bayes’ rule, and
recalling that the buyer has knowledge of f and ψ, this is

h(θ)
def
= P (real ∧ NO|θ) = nr(1− θ)f(θ)

nrf(θ) + ndψ(θ)
. (1)

Given a set I ⊆ [0, 1], let h(I) denote the set {h(θ)} for
θ ∈ I . Let h(I1) < h(I2) mean that every value in I1 is
strictly less than every value in I2.

5The asymmetry in proof-of-decoy but no proof-of-authenticity
is important in preventing a buyer from using coercion to buy only
real ballots, while at the same time allowing a voter with a decoy
ballot to sell with impunity to accusations of acting against the social
good (since she can, if challenged to do so, prove that it is decoy, and
thus that she is acting in good faith.) A voter will never choose to
reveal that she holds a decoy to a buyer, since doing so would just
cause the buyer to refuse to transact with her.



Lemma 1 (Buyer Optimality). The optimal buyer strategy in
the subgame perfect equilibrium is to buy in order of decreas-
ing h(θ) until the budget is exhausted.

Where proofs are omitted, this is because of space.6
We assume w.l.o.g. that if a YES-buyer has to choose be-

tween buying two subsets of [0, 1] for which h(θ) is equal, he
will buy the subset with lower θ. Let M def

=
∫
I f(θ)dθ denote

the fraction of real ballots that the buyer buys. By ‘election
bought,’ we refer to the event that the buyer buys enough real
ballots to change the outcome (with nr real ballots); by ‘cor-
rect outcome is NO,’ we refer to the event that the election
outcome is NO (with nr + nd real ballots).

Lemma 2. The probability that the buyer changes the
outcome in the subgame perfect equilibrium is given by
P (buyer changes outcome)

= P ([election bought] ∧ [correct outcome is NO]) ≈

P

(
nr(1− 2M− 2(1−M)µY )

2
√
nr(1−M)µY (1− µY )

< Z<
(1− 2µ)

√
nr + nd

2
√
µ(1− µ)

)
, (2)

where Z ∼ N (0, 1), µ
def
= Ef [θ], and µY

def
=

1
1−M

∫
[0,1]\I θf(θ)dθ.

This allows us to compute the probability the buyer changes
the election outcome, which is determined by the fraction of
real ballots that he is able to buy given a defense.

4 Optimal Decoy Distribution
In this section, we assume that the EA can design defense
distribution ψ, and study the equilibrium of the vote-buying
game where the EA chooses an optimal defense given that the
buyer will best respond.

Definition 1 (Canonical Defense). Defense ψ is canonical if
there is some x, 0 ≤ x ≤ 1, s.t. h(θ) = min(1− x, 1− θ).

See Figure 1(a) for an illustration of a canonical defense.
Let supp(g) denote the support of distribution g. Define the
following two properties for ψ:

(P1) h(θ) has the same value for all θ ∈ supp(ψ).

(P2) minθ∈supp(ψ) h(θ) ≥ maxθ/∈supp(ψ) h(θ)

Lemma 3. Any defenseψ satisfying both P1 and P2 is canon-
ical.

Lemma 4. If the buyer buys all ballots in supp(ψ), then there
is a canonical defense ψ′ with the same value.

Lemma 3 characterizes canonical defenses in terms of the
properties defined above. Lemma 4 shows that if the buyer
can buy up all decoys, then how they are distributed no longer
matters. Fixing the number of real ballots nr, the EA’s re-
maining choices are about nd and ψ. We now state our main
characterization result.

Theorem 1. For a given nr, nd, and buyer budget B, the
optimal strategy of the EA in the subgame perfect equilibrium
is canonical.

6The longer version of the paper, which includes all proofs, is
available at request from the authors.

Figure 3: Comparing the power of various defenses for f =
Beta(2, 4), xC and xA = 0.5, and 1000 total ballots.

Proof. Assume for contradiction, that there is a non-canonical
ψ that is better than any canonical defense. Let k be an index,
and consider a sequence of defenses {ψk} = {ψ0, ψ1, ...},
where ψ def

= ψ0. We will show that we can define a finite se-
quence that obtains a canonical defense at least as good as ψ.
Let hk(θ) denote the function h that corresponds to ψk.

Let Ik ⊆ [0, 1] denote the set of intervals that are best for
the buyer given ψk (solving for the buyer’s objective subject
to his budget). If the buyer buys all ballots in supp(ψk), then
by Lemma 4, we can modify ψk to form a canonical ψk+1

with the same value, and we are done.
Suppose otherwise, and that in addition ψk does not satisfy

P1 and P2. That is, we have:
(P0) the buyer does not buy all ballots in supp(ψk), and

one or both of
(¬ P1) hk(θ) takes on multiple values for θ ∈ supp(ψk)

(¬ P2) minθ∈supp(ψk) hk(θ) < maxθ/∈supp(ψk) hk(θ).

By P0, we can construct some interval Sk ⊆ supp(ψk) (the
source set), where the buyer is not buying all ballots, and an
interval Tk ⊆ Ik (the target set), such that hk(Sk) < hk(Tk)
(and thus, Sk ∩ Tk = ∅). Let Rk = suppψ \ Ik be the re-
maining subset of supp(ψ) that the buyer is not buying. We
must have argminθ∈supp(ψk)

hk(θ) ⊆ Rk. The existence of
Tk follows from ¬P1 because ∃θ ∈ Ik for which hk(θ) >
minθ∈supp(ψk) hk(θ) (the existence is guaranteed by values
of θ ∈ supp(ψk) that are greater than the minimum), and thus
we have maxθ∈Ik hk(θ) > minθ∈supp(ψk) hk(θ). If ¬P2,
then by buyer optimality (Lemma 1), argminθ∈supp(ψk)

hk(θ) ⊆
Rk. In both cases, argminθ∈supp(ψk)

hk(θ) ⊆ Sk.
We pick εS , εT > 0 to define a move of a uniform slice of

ψ density from Sk to Tk such that,
(i)
∫
θ∈Sk

max(0, ψk(θ)−εS) dθ =
∫
θ∈Tk

εT dθ [mass con-
servation]

(ii) hk+1(Sk) < hk+1(Tk) [target set still preferred by buyer
to source set]

By continuity (except possibly on a set of measure 0) of
h(θ), such an εS , εT pair that satisfies (ii) exists. We argue
that Sk ∩ Ik+1 = ∅. Before the ψ mass is moved, we have
minhk(Ik) ≥ hk(Tk) > hk(Sk). After the move, we have



minhk+1(Ik+1) ≥ hk+1(Tk) > hk+1(Sk). The inequality
is because the buyer can always exhaust his budget by buying
Ik. Thus, we know that the buyer does not buy anything in Sk
after theψ mass has been moved. LetQk

def
=
∫
Ik(1−θ)f(θ)dθ.

Thus, we have Qk+1 ≤ Qk because the only set on which
hk+1(θ) > hk(θ) is Sk. In addition, minθ∈supp(ψk) hk(θ) <

minθ∈supp(ψk+1) hk+1(θ). Because ∀k ∈ Z+, θ ∈ [0, 1],
hk(θ) ≥ 0 the sequence must be finite.

Theorem 1 says that for a given nr and nd, the optimal
design of ψ by the EA is canonical. The next result shows
that ψ (and its support, which is [0, xO], “o” for optimal) can
be easily computed given any nr and nd.

Theorem 2. For any given nr and nd, the optimal defense of
the EA in the subgame perfect equilibrium is given by a decoy
ballot distribution with density function

ψ(θ) =

{
nr

nd

(xO−θ)f(θ)
1−xO

for θ ∈ [0, xO]

0 for θ ∈ (xO, 1]
, (3)

where the threshold xO is determined by the following equa-
tion: 1

1−xO

∫ xO

0
F (θ)dθ = nd

nr
and F (θ) is the CDF of f .

With this expression, we can determine the power of in-
creasing the number of decoys, nd, for any voter type distri-
bution f , buyer budget B, and number of real ballots nr.

5 Neutral Approaches
In this section, we consider defenses where the EA does not
design ψ, since doing so may be argued as the EA playing too
active a role in running the election. Beyond neutrality, these
new approaches have the additional advantage of not relying
on the EA having knowledge of f .

5.1 A Constrained Defense
We first consider a constrained defense:

Definition 2. Defense ψ is constrained if the EA distributes
decoy ballots uniformly at random, i.e., ψ = f .

Having a constrained defense implies that h(θ) = nr

nr+nd
(1−

θ) and I = [0, τC ] for some τC > 0, such that the budget is
spent, i.e., F (τC) = B/(nr + nd).

Definition 3 (Low Budget). A low budget is a budget where∫ 1

τC
θf(θ)dθ < 1

2 − F (τC).
Definition 4 (High Budget). A high budget is a budget where∫ 1

τC
θf(θ)dθ > 1

2 − F (τC).
In words, for a buyer with a low (high) budget, the expected

number of real ballots the buyer buys is lower than (exceeds)
the amount needed to change the election outcome.

One way to study the power of a constrained defense is to
consider the following question: if the total number of ballots
is fixed, what is the optimal mix of real and decoy ballots?

Theorem 3. Fixing the total number of ballots, the best con-
strained defense for the EA in the subgame perfect equilib-
rium is all (one) real ballots for low (high) buyer budget un-
der the Normal approximation (2).

With a low buyer budget, while a constrained defense makes
the buyer buy some decoys, it also leaves unpurchased decoys
and reduces the number of unpurchased real ballots, decreas-
ing the accuracy of the result. Thus, decoys are not useful for
the EA in this case. On the other hand, the best that the EA
can do with a buyer with a high budget is to issue a single real
ballot, with the hope that the buyer won’t buy it, resulting in
a high variance outcome based on the vote of a single voter.
Decoys are used, but not to good effect.

5.2 Civic Duty Defense
In this model, the EA makes decoy ballots available to a ran-
dom subset of those voters who make an explicit request for
a decoy.7 The decision of the EA is thus the number of decoy
ballots, but not how to distribute them. Rather, this decision
arises through a simple model of a societal process.

In modeling this process, we assume that, for a YES-buyer,
there is some distribution of civic-mindedness π(θ), with sup-
port on [0, xC], that determines the probability that a voter will
request a decoy, where xC is a fixed, publicly known quantity
(“c” for civic). In particular, we assume for simplicity that
π(θ) ∝ xC − θ. This captures the idea that the more extreme
an agent’s type, the more likely the agent is to request a decoy
and thus help preserve the election’s integrity.

Via Bayes’ rule, the effect on the distribution on types ψ
of those who get decoys is ψ(θ) = P (θ|request decoy) ∝
P (request decoy|θ)f(θ) = π(θ) · f(θ) = (xC − θ)f(θ). In
fact, there will sometimes be a choice of nd such that the
civic duty defense is optimal. If the EA can choose a number
of decoys nd such that nd(1−xC)

nr
= k, where k is the nor-

malization constant, then we see the canonical structure, with
h(θ) = 1−xC, ∀θ ∈ [0, xC]. We call the defense obtained via
this model a civic duty defense. An example of this defense
is illustrated in Figure 1(b).

5.3 Auction-Based Defense
In this variation, the EA makes decoy ballots available to vot-
ers via an auction. We assume a simple nd+1st price auc-
tion (when selling nd decoy ballots), with the EA choosing
nd. The intent is not to model a sophisticated auction, but to
adopt a strategyproof mechanism as a model for an idealized
market-based approach for distributing decoy ballots to vot-
ers. The effect is that decoys go to voters with the highest
value for decoys. As with the civic duty defense, the EA who
makes use of an auction-based defense chooses the number
of decoy ballots but not how to distribute them.

In modeling this societal process, we assume that the value
to a voter for a decoy is monotonically increasing as the voter’s
type θ gets closer to zero.8 For this reason, we model the

7We leave unmodeled that the buyer could try to interfere with
this process. But notice that buying decoys from citizens who par-
ticipate in this process is not useful because it depletes budget with-
out hope of gaining real ballots. The same argument holds for the
auction-based defense.

8We insist, though, that the reasonable property holds that a
voter’s value for using a decoy is less than her value for a real ballot,
and thus this auction-based societal process is consistent with our
analysis in Section 2 in regard to the ordering of minimum accept-
able offer price from a buyer across different kinds of voters.



(a) constrained defense (b) optimal defense

(c) auction-based defense (d) civic duty defense
Figure 4: Using decoys to thwart vote buying, for different buyer budgets (the number of ballots the buyer can buy). The number of real
ballots is 750, the voter type distribution is f = Beta(2,4). (a) Constrained defense, in which decoy ballots are distributed according to f(θ). (b)
Optimal defense. (c) Auction-based defense with xA = 0.5. (d) Civic duty defense with xC = 0.5.

effect of the auction as being that there is some threshold
xA ∈ (0, 1), whereby the decoys are distributed according
to voter type distribution f , conditioned on θ ≤ xA (“A” for
auction). In particular, for θ ∈ [0, xA], we have ψ(θ) ∝ f(θ).

6 Simulation Results
We describe the results of an extensive simulation study to
compare power of various defenses in preventing a buyer suc-
ceeding in changing the outcome of an election. We choose to
present results for voter type distribution f = Beta(2, 4), but
the analysis is qualitatively unchanged for other distributions,
including those with mean voting types in [0.01,0.49].

Figure 4 fixes the number of real ballots, and shows that
vote buying can be successfully thwarted by issuing suffi-
ciently many decoy ballots. The optimal and civic duty de-
fenses are most effective, but even issuing decoys according
to the auction-based and constrained defenses substantially
reduces the probability of a vote buyer’s success. It is in-
teresting that even a small number of decoys, relative to the
number of real ballots, can be effective.

It also helps with understanding to compare the power of
different defenses when fixing the total number of ballots and
varying the number of decoy ballots. Figure 2(a) shows the
effect of varying the fraction of real ballots when using an
optimal defense. Figures 2(b) and 2(c) show the effect of the
civic duty defense and auction-based defensse for different
values of model parameter xC (the ‘max type requesting a de-
coy’) and xA (the ‘max type winning a decoy’), with the EA
optimizing the number of decoys for each value of xC and xA,
respectively. The auction-based defense is the least effective,
but even here there is a range of xA for which the performance
is better than without using any decoys. In Figures 2(b) and
2(c), a maximum type of 0 receiving a decoy corresponds to
zero decoys. Also fixing the total number of ballots, we ex-

amine the relative power of the different defenses as a func-
tion of the buyer budget. In Figure 3 (with 1000 total bal-
lots) we see that an optimal defense can use decoys to protect
against buyers with around twice the budget of a ‘no defense’
approach that just uses real ballots. For the civic-duty and
auction-based defenses, we fix xC = xA = 0.5 and pick the
best nd at each point in the graph. The auction-based defense
is better than no defense and the constrained defense. The
civic-duty defense has good performance, almost the same as
the optimal defense for many buyer budgets.

7 Conclusion
We have presented the first game-theoretic study of the power
of decoy ballots in thwarting vote buyers. We have character-
ized the form of an optimal defense, and compared its power
to those of neutral defenses that could be enabled through
leveraging simple societal processes to distribute decoy bal-
lots. Our results are positive: decoy ballots are effective in
thwarting the power of a vote buyer. Amongst the neutral
defenses, the civic duty defense, where decoys are given at
random to a subset of those who request such a ballot, seems
especially interesting. Topics for future study include under-
standing defenses under the requirement that they must pro-
tect equally against a YES- or NO-buyer, and in settings with
more than two ballot choices, multiple buyers, simultaneous
polls, and participants with value and cost heterogeneity.
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